2 research outputs found

    Paired emitter-detector diode detection with dual wavelength monitoring for enhanced sensitivity to transition metals in ion chromatography with post-column reaction

    Get PDF
    The combination of post-column derivatisation and visible detection are regularly employed in ion chromatography (IC) to detect poorly absorbing species. Although this mode is often highly sensitive, one disadvantage is the increase in repeating baseline artifacts associated with out-of-sync pumping systems. The work presented here will demonstrate the use of a second generation design paired emitter-detector diode (PEDD-II) detection mode offering enhanced sensitivity to transition metals in IC by markedly reducing this problem and also by improving signal noise. First generation designs demonstrated the use of a single integrated PEDD detector cell as a simple, small (15 x 5 mm), highly sensitive, low cost photometric detector for the detection of metals in ion chromatography (IC). The basic principle of this detection mode lies in the employment of two linear light emitting diodes (LEDs), one operating in normal mode as a light source and the other in reverse bias serving as a light detector. The second generation PEDD-II design showed increased sensitivity for Mn(II)- and Co(II)-2-(pyridylazo) resorcinol (PAR) complexes as a result of two simultaneously acquiring detection cells - one analytical PEDD cell and one reference PEDD cell. Therefore, the PEDD-II employs two wavelengths whereby one monitors the analyte reaction product and the second monitors a wavelength close to the isosbestic point. The optimum LED wavelength to be used for the analytical cell was investigated to maximise peak response. The fabrication process for both the analytical and reference PEDD cells was validated by determining the reproducibility of detectors within a batch. The reproducibility and sensitivity of the PEDD-II detector was then investigated using signals obtained from both intra- and inter-day chromatograms

    Determination of phosphate using a highly sensitive paired emitter-detector diode photometric flow detector

    Get PDF
    The use of a novel inexpensive photometric device, Paired Emitter Detector Diode (PEDD) has been applied to the colorimetric determination of phosphate using the malachite green spectrophotometric method. The novel miniaturized flow detector applied within this manifold is a highly sensitive, low cost, miniaturized light emitting diode (LED) based detector. The optical flow cell was constructed from two LEDs, whereby one is the light source and the second is the light detector, with the LED light source forward biased and the LED detector reversed biased. The photocurrent generated by the LED light source discharges the junction capacitance of the detector diode from 5 V (logic 1) to 1.7 V (logic 0) and the time taken for this process to occur is measured using a simple timer circuit. The malachite green (MG) method employed for phosphate determination is based on the formation of a green molybdophosphoric acid complex, the intensity of which is directly related to phosphate concentration. Optimum analytical parameters such as reaction kinetics, reagent to sample concentration ratio and emitter wavelength intensity were investigated for the spectrophotometric method. Linear calibration plots that obeyed the Beer-Lambert Law were obtained for phosphate in the range of 0.02-2 µM. The dynamic range, sensitivity and limits of detection are reported
    corecore