17 research outputs found

    Autoimmune kidney disease and impaired engulfment of apoptotic cells in mice with macrophage peroxisome proliferator-activated receptor gamma or retinoid X receptor alpha deficiency.

    No full text
    Autoimmune glomerulonephritis is a common manifestation of systemic lupus erythematosus (SLE). In this study, we show that mice lacking macrophage expression of the heterodimeric nuclear receptors PPARγ or RXRα develop glomerulonephritis and autoantibodies to nuclear Ags, resembling the nephritis seen in SLE. These mice show deficiencies in phagocytosis and clearance of apoptotic cells, and they are unable to acquire an anti-inflammatory phenotype upon feeding of apoptotic cells, which is critical for the maintenance of self-tolerance. These results demonstrate that stimulation of PPARγ and RXRα in macrophages facilitates apoptotic cell engulfment, and they provide a potential strategy to avoid autoimmunity against dying cells and to attenuate SLE.This work was supported by grants from the Spanish Ministry of Science and Innovation (SAF2009-07466), the Fundación Genoma España, and Marató TV3 (to M.R.), and by grants from the Fundación Genoma España and the Spanish Ministry of Health (FIS PI052270) (to T.F.). T.R. is supported by the People Marie Curie Intra-European Fellowships Program. M.R. and T.F. are supported by the Ramón y Cajal Program. Centro Nacional de Investigaciones Cardiovasculares is supported by the Spanish Ministry of Science and Innovation and the ProCNIC Foundation. We thank Dr. Christian Hellriegel and Dr. Rubén Mota (Centro Nacional de Investigaciones Cardiovasculares [CNIC]), Roisin Brid Doohan (Histopathology Unit, CNIC), and Francisco Urbano Olmos and Covadonga Aguado Ballano (Transmission Electron Microscopy Laboratory, Universidad Autónoma, Madrid, Spain) for help and advice. We also thank Simon Bartlett for editorial assistance. The optical microscopy work described in this study was conducted at the Microscopy and Dynamic Imaging Unit, CNIC, Madrid, Spain.S

    Autoimmune Kidney Disease and Impaired Engulfment of Apoptotic Cells in Mice with Macrophage Peroxisome Proliferator-Activated Receptor γ or Retinoid X Receptor α Deficiency

    No full text
    Autoimmune glomerulonephritis is a common manifestation of systemic lupus erythematosus (SLE). In this study, we show that mice lacking macrophage expression of the heterodimeric nuclear receptors PPARγ or RXRα develop glomerulonephritis and autoantibodies to nuclear Ags, resembling the nephritis seen in SLE. These mice show deficiencies in phagocytosis and clearance of apoptotic cells, and they are unable to acquire an anti-inflammatory phenotype upon feeding of apoptotic cells, which is critical for the maintenance of self-tolerance. These results demonstrate that stimulation of PPARγ and RXRα in macrophages facilitates apoptotic cell engulfment, and they provide a potential strategy to avoid autoimmunity against dying cells and to attenuate SLE

    Propagation of adipogenic signals through an epigenomic transition state

    No full text
    The transcriptional mechanisms by which temporary exposure to developmental signals instigates adipocyte differentiation are unknown. During early adipogenesis, we find transient enrichment of the glucocorticoid receptor (GR), CCAAT/enhancer-binding protein β (CEBPβ), p300, mediator subunit 1, and histone H3 acetylation near genes involved in cell proliferation, development, and differentiation, including the gene encoding the master regulator of adipocyte differentiation, peroxisome proliferator-activated receptor γ2 (PPARγ2). Occupancy and enhancer function are triggered by adipogenic signals, and diminish upon their removal. GR, which is important for adipogenesis but need not be active in the mature adipocyte, functions transiently with other enhancer proteins to propagate a new program of gene expression that includes induction of PPARγ2, thereby providing a memory of the earlier adipogenic signal. Thus, the conversion of preadipocyte to adipocyte involves the formation of an epigenomic transition state that is not observed in cells at the beginning or end of the differentiation process

    PPARγ and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide scale

    No full text
    Peroxisome proliferator-activated receptor γ(PPARγ), a nuclear receptor and the target of anti-diabetic thiazolinedione drugs, is known as the master regulator of adipocyte biology. Although it regulates hundreds of adipocyte genes, PPARγ binding to endogenous genes has rarely been demonstrated. Here, utilizing chromatin immunoprecipitation (ChIP) coupled with whole genome tiling arrays, we identified 5299 genomic regions of PPARγ binding in mouse 3T3-L1 adipocytes. The consensus PPARγ/RXRα “DR-1”-binding motif was found at most of the sites, and ChIP for RXRα showed colocalization at nearly all locations tested. Bioinformatics analysis also revealed CCAAT/enhancer-binding protein (C/EBP)-binding motifs in the vicinity of most PPARγ-binding sites, and genome-wide analysis of C/EBPα binding demonstrated that it localized to 3350 of the locations bound by PPARγ. Importantly, most genes induced in adipogenesis were bound by both PPARγ and C/EBPα, while very few were PPARγ-specific. C/EBPβ also plays a role at many of these genes, such that both C/EBPα and β are required along with PPARγ for robust adipocyte-specific gene expression. Thus, PPARγ and C/EBP factors cooperatively orchestrate adipocyte biology by adjacent binding on an unanticipated scale

    DOT1L/KMT4 Recruitment and H3K79 Methylation Are Ubiquitously Coupled with Gene Transcription in Mammalian Cells▿

    No full text
    The histone H3 lysine 79 methyltransferase DOT1L/KMT4 can promote an oncogenic pattern of gene expression through binding with several MLL fusion partners found in acute leukemia. However, the normal function of DOT1L in mammalian gene regulation is poorly understood. Here we report that DOT1L recruitment is ubiquitously coupled with active transcription in diverse mammalian cell types. DOT1L preferentially occupies the proximal transcribed region of active genes, correlating with enrichment of H3K79 di- and trimethylation. Furthermore, Dot1l mutant fibroblasts lacked H3K79 di- and trimethylation at all sites examined, indicating that DOT1L is the sole enzyme responsible for these marks. Importantly, we identified chromatin immunoprecipitation (ChIP) assay conditions necessary for reliable H3K79 methylation detection. ChIP-chip tiling arrays revealed that levels of all degrees of genic H3K79 methylation correlate with mRNA abundance and dynamically respond to changes in gene activity. Conversion of H3K79 monomethylation into di- and trimethylation correlated with the transition from low- to high-level gene transcription. We also observed enrichment of H3K79 monomethylation at intergenic regions occupied by DNA-binding transcriptional activators. Our findings highlight several similarities between the patterning of H3K4 methylation and that of H3K79 methylation in mammalian chromatin, suggesting a widespread mechanism for parallel or sequential recruitment of DOT1L and MLL to genes in their normal “on” state
    corecore