87 research outputs found

    Therapeutic inhibition of FcgammaRIIb signaling targets leukemic stem cells in chronic myeloid leukemia

    Get PDF
    Despite the successes achieved with molecular targeted inhibition of the oncogenic driver Bcr-Abl in chronic myeloid leukemia (CML), the majority of patients still require lifelong tyrosine kinase inhibitor (TKI) therapy. This is primarily caused by resisting leukemic stem cells (LSCs), which prevent achievement of treatment-free remission in all patients. Here we describe the ITIM (immunoreceptor tyrosine-based inhibition motif)-containing Fc gamma receptor IIb (FcgammaRIIb, CD32b) for being critical in LSC resistance and show that targeting FcgammaRIIb downstream signaling, by using a Food and Drug Administration-approved BTK inhibitor, provides a successful therapeutic approach. First, we identified FcgammaRIIb upregulation in primary CML stem cells. FcgammaRIIb depletion caused reduced serial re-plaiting efficiency and cell proliferation in malignant cells. FcgammaRIIb targeting in both a transgenic and retroviral CML mouse model provided in vivo evidence for successful LSC reduction. Subsequently, we identified BTK as a main downstream mediator and targeting the Bcr-Abl-FcgammaRIIb-BTK axis in primary CML CD34(+) cells using ibrutinib, in combination with standard TKI therapy, significantly increased apoptosis in quiescent CML stem cells thereby contributing to the eradication of LSCs.. As a potential curative therapeutic approach, we therefore suggest combining Bcr-Abl TKI therapy along with BTK inhibition

    Prognostic impact of progression to induction chemotherapy and prior paclitaxel therapy in patients with germ cell tumors receiving salvage high-dose chemotherapy in the last 10 years: A study of the European Society for Blood and Marrow Transplantation Solid Tumors Working Party

    Get PDF
    Little is known about the prognostic impact of prior paclitaxel therapy and response to induction chemotherapy defined as the regimen preceding high-dose chemotherapy (HDCT) for the salvage therapy of advanced germ cell tumors. Twenty European Society for Blood and Marrow Transplantation centers contributed data on patients treated between 2002 and 2012. Paclitaxel used in either prior lines of therapy or in induction-mobilization regimens was considered. Multivariable Cox analyses of prespecified factors were undertaken on PFS and overall survival (OS). As of October 2013, data for 324 patients had been contributed to this study. One hundred and ninety-two patients (59.3%) had received paclitaxel. Sixty-one patients (19%) had a progression to induction chemotherapy, 234 (72%) a response (29 (9%) missing or granulocyte colony-stimulating factor without chemotherapy). Both progression to induction chemotherapy and prior paclitaxel were significantly associated with shorter OS univariably (P<0.001 and P=0.032). On multivariable analysis from the model with fully available data (N=216) progression to induction was significantly prognostic for PFS and OS (P=0.003), but prior paclitaxel was not (P=0.674 and P=0.739). These results were confirmed after multiple imputation of missing data. Progression to induction chemotherapy could be demonstrated as an independent prognostic factor, in contrast to prior paclitaxel

    Heterogeneous bone-marrow stromal progenitors drive myelofibrosis via a druggable alarmin axis

    Get PDF
    Functional contributions of individual cellular components of the bone-marrow microenvironment to myelofibrosis (MF) in patients with myeloproliferative neoplasms (MPNs) are incompletely understood. We aimed to generate a comprehensive map of the stroma in MPNs/MFs on a single-cell level in murine models and patient samples. Our analysis revealed two distinct mesenchymal stromal cell (MSC) subsets as pro-fibrotic cells. MSCs were functionally reprogrammed in a stage-dependent manner with loss of their progenitor status and initiation of differentiation in the pre-fibrotic and acquisition of a pro-fibrotic and inflammatory phenotype in the fibrotic stage. The expression of the alarmin complex S100A8/S100A9 in MSC marked disease progression toward the fibrotic phase in murine models and in patient stroma and plasma. Tasquinimod, a small-molecule inhibiting S100A8/S100A9 signaling, significantly ameliorated the MPN phenotype and fibrosis in JAK2V617F-mutated murine models, highlighting that S100A8/S100A9 is an attractive therapeutic target in MPNs.Leimkühler and colleagues demonstrate that mesenchymal stromal progenitor cells are fibro

    Der Einfluss von S-Ketamin und N,N-dimethyltrytamine (DMT) auf die Präpulsinhibition und die attentive Modulation des Startlereflexes : eine humanexperimentelle Untersuchung zum Modellpsychoseparadigma

    Get PDF
    Prepulse inhibition (PPI) of the acoustic startle reflex is a well established model for sensorimotor gating. Sensorimotor gating and also habituation are considered to serve as mechanisms that protect early stimulus processing and prevent the organism from experiencing sensory overload. Habituation refers to the reduction of the reflex amplitude by presentation of a weak prestimulus 30-500 ms prior to the startle-elicting stimulus. Several studies indicate that PPI does not reflect a pure preattentive mechanism but is also influenced by controlled attentional processes. Pharmacological challenges with hallucinogens are used as model for psychosis in animal and human experimental studies. Remarkably, in contrast to the findings in schizophrenic patients and in animal hallucinogen models of psychosis, previous studies with healthy volunteers demonstrated increased levels of PPI after administration of low to moderate doses of either the antiglutamatergic hallucinogen ketamine or the serotonergic hallucinogen psilocybin. The aim of the present study was to investigate the influence of moderate and high doses of the serotonergic hallucinogen N,N-dimethyltryptamine (DMT) and the NMDA antagonist S-ketamine on PPI and its attentional modulation in humans. Fifteen healthy volunteers were included in a double-blind cross-over study with two doses of DMT and S-ketamine. Effects on PPI and its attentional modulation were investigated. Nine subjects completed both experimental days with two doses of both drugs. S-ketamine increased PPI in both dosages, whereas DMT had no significant effects on PPI. S-ketamine decreased and DMT tended to decrease startle magnitude. There were no significant effects of either drug on the attentional modulation of PPI. In human experimental hallucinogen psychoses, and even with high, clearly psychotogenic doses of DMT or S-ketamine, healthy subjects failed to exhibit the predicted attenuation of PPI. In contrast, PPI was augmented and the startle magnitude was decreased after S-ketamine. These date point to important differences between human hallucinogen models and both animal hallucinogen models of psychosis and naturally occurring schizophrenia

    Der Einfluss von S-Ketamin und N,N-dimethyltrytamine (DMT) auf die Präpulsinhibition und die attentive Modulation des Startlereflexes : eine humanexperimentelle Untersuchung zum Modellpsychoseparadigma

    No full text
    Prepulse inhibition (PPI) of the acoustic startle reflex is a well established model for sensorimotor gating. Sensorimotor gating and also habituation are considered to serve as mechanisms that protect early stimulus processing and prevent the organism from experiencing sensory overload. Habituation refers to the reduction of the reflex amplitude by presentation of a weak prestimulus 30-500 ms prior to the startle-elicting stimulus. Several studies indicate that PPI does not reflect a pure preattentive mechanism but is also influenced by controlled attentional processes. Pharmacological challenges with hallucinogens are used as model for psychosis in animal and human experimental studies. Remarkably, in contrast to the findings in schizophrenic patients and in animal hallucinogen models of psychosis, previous studies with healthy volunteers demonstrated increased levels of PPI after administration of low to moderate doses of either the antiglutamatergic hallucinogen ketamine or the serotonergic hallucinogen psilocybin. The aim of the present study was to investigate the influence of moderate and high doses of the serotonergic hallucinogen N,N-dimethyltryptamine (DMT) and the NMDA antagonist S-ketamine on PPI and its attentional modulation in humans. Fifteen healthy volunteers were included in a double-blind cross-over study with two doses of DMT and S-ketamine. Effects on PPI and its attentional modulation were investigated. Nine subjects completed both experimental days with two doses of both drugs. S-ketamine increased PPI in both dosages, whereas DMT had no significant effects on PPI. S-ketamine decreased and DMT tended to decrease startle magnitude. There were no significant effects of either drug on the attentional modulation of PPI. In human experimental hallucinogen psychoses, and even with high, clearly psychotogenic doses of DMT or S-ketamine, healthy subjects failed to exhibit the predicted attenuation of PPI. In contrast, PPI was augmented and the startle magnitude was decreased after S-ketamine. These date point to important differences between human hallucinogen models and both animal hallucinogen models of psychosis and naturally occurring schizophrenia
    • …
    corecore