2 research outputs found

    <i>In Vivo</i> Fate of Avidin-Nucleic Acid Nanoassemblies as Multifunctional Diagnostic Tools

    No full text
    This study describes the formulation optimization and body-cell distribution and clearance in mice of a dually fluorescent biodegradable poly avidin nanoassembly based on the novel Avidin-Nucleic-Acid-Nano-ASsembly (ANANAS) platform as a potential advancement of classic avidin/biotin-based targeted delivery. The nanoformulation circulates freely in the bloodstream; it is slowly captured by filter organs; it is efficiently cleared within 24ā€“48 h, and it is poorly immunogenic. The system displays more favorable properties than its parent monomeric avidin and it is a promising tool for diagnostic purposes for future translational aims, for which free circulation in the bloodstream, safety, multifunctionality and high composition definition are all necessary requirements. In addition, the assembly shows a time-dependent cell penetration capability, suggesting it may also function as a NP-dependent drug delivery tool. The ease of preparation together with the possibility to fine-tune the surface composition makes it also an ideal candidate to understand if and how nanoparticle composition affects its localization

    Bioreducible Hydrophobin-Stabilized Supraparticles for Selective Intracellular Release

    No full text
    One of the main hurdles in nanomedicine is the low stability of drugā€“nanocarrier complexes as well as the drug delivery efficiency in the region-of-interest. Here, we describe the use of the film-forming protein hydrophobin HFBII to organize dodecanethiol-protected gold nanoparticles (NPs) into well-defined supraparticles (SPs). The obtained SPs are exceptionally stable <i>in vivo</i> and efficiently encapsulate hydrophobic drug molecules. The HFBII film prevents massive release of the encapsulated drug, which, instead, is activated by selective SP disassembly triggered intracellularly by glutathione reduction of the protein film. As a consequence, the therapeutic efficiency of an encapsulated anticancer drug is highly enhanced (2 orders of magnitude decrease in IC<sub>50</sub>). Biodistribution and pharmacokinetics studies demonstrate the high stability of the loaded SPs in the bloodstream and the selective release of the payloads once taken up in the tissues. Overall, our results provide a rationale for the development of bioreducible and multifunctional nanomedicines
    corecore