14,002 research outputs found
Dermatophyte Morphology: A Scanning Electron Microscopy Study
The Dermatophytes are a broad group of fungi belonging to the class Fungii imperfecti that are the causative agents of dermophytosis (ringworm infections). The present work offers an overview of the morphology of these fungi found in cultures according to the scanning electron microscope. The fungi were obtained from cultures left to develop over variable periods of time that would be sufficient for growth. The morphological features of some dermatophytes obtained in artificial cultures are detailed: M. canis, M. gypseum, M. audouini, M. cookei, T. mentagrophytes, T. schoulemu, T. verrucosuin, T. ajelloi, T. prohferans, and E. floccosum. In all cases an analysis of the morphology of the reproductive mycelium developed in the culture was made: hyphae, macroconidia, microconidia, and chlamydospores; details that serve to distinguish one fungus from another. In the perfect forms, the morphology of the peridial hyphae and of the ascocarps (cleistotethia) are described
Optical and Infrared Imaging and Spectroscopy of the Multiple-Shell Planetary Nebula NGC 6369
NGC 6369 is a double-shell planetary nebula (PN) consisting of a bright
annular inner shell with faint bipolar extensions and a filamentary envelope.
We have used ground- and space-based narrow-band optical and near-IR images,
broad-band mid-IR images, optical long-slit echelle spectra, and mid-IR spectra
to investigate its physical structure. These observations indicate that the
inner shell of NGC 6369 can be described as a barrel-like structure shape with
polar bubble-like protrusions, and reveal evidence for H2 and strong polycyclic
aromatic hydrocarbons (PAHs) emission from a photo-dissociative region (PDR)
with molecular inclusions located outside the bright inner shell.
High-resolution HST narrow-band images reveal an intricate excitation structure
of the inner shell and a system of "cometary" knots. The knotty appearance of
the envelope, the lack of kinematical evidence for shell expansion and the
apparent presence of emission from ionized material outside the PDR makes us
suggest that the envelope of NGC 6369 is not a real shell, but a flattened
structure at its equatorial regions. We report the discovery of irregular knots
and blobs of diffuse emission in low-excitation and molecular line emission
that are located up to 80" from the central star, well outside the main nebular
shells. We also show that the filaments associated to the polar protrusions
have spatial extents consistent with post-shock cooling regimes, and likely
represent regions of interaction of these structures with surrounding material.Comment: 14 pages, 13 figures. Accepted for publication in MNRA
First Known Feeding Trace of the Eocene Bottom-Dwelling Fish Notogoneus osculus and Its Paleontological Significance
BACKGROUND: The Green River Formation (early Eocene, about 42-53 Ma) at and near Fossil Butte National Monument in Wyoming, USA, is world famous for its exquisitely preserved freshwater teleost fish in the former Fossil Lake. Nonetheless, trace fossils attributed to fish interacting with the lake bottom are apparently rare, and have not been associated directly with any fish species. Here we interpret the first known feeding and swimming trace fossil of the teleost Notogoneus osculus Cope (Teleostei: Gonorynchidae), which is also represented as a body fossil in the same stratum. METHODOLOGY/PRINCIPAL FINDINGS: A standard description of the trace fossil, identified as Undichna cf. U. simplicatas, was augmented by high-resolution digital images and spatial and mathematical analyses, which allowed for detailed interpretations of the anatomy, swimming mode, feeding behavior, and body size of the tracemaker. Our analysis indicates that the tracemaker was about 45 cm long; used its caudal, anal, and pelvic fins (the posterior half of its body) to make the swimming traces; and used a ventrally oriented mouth to make overlapping feeding marks. We hypothesize that the tracemaker was an adult Notogoneus osculus. CONCLUSIONS/SIGNIFICANCE: Our results are the first to link a specific teleost tracemaker with a trace fossil from the Green River Formation, while also interpreting the size and relative age of the tracemaker. The normal feeding and swimming behaviors indicated by the trace fossil indicate temporarily oxygenated benthic conditions in the deepest part of Fossil Lake, counter to most paleoecological interpretations of this deposit. Lastly, our spatial and mathematical analyses significantly update and advance previous approaches to the study of teleost trace fossils
Reconstructing the primordial power spectrum from the CMB
We propose a straightforward and model independent methodology for
characterizing the sensitivity of CMB and other experiments to wiggles,
irregularities, and features in the primordial power spectrum. Assuming that
the primordial cosmological perturbations are adiabatic, we present a function
space generalization of the usual Fisher matrix formalism, applied to a CMB
experiment resembling Planck with and without ancillary data. This work is
closely related to other work on recovering the inflationary potential and
exploring specific models of non-minimal, or perhaps baroque, primordial power
spectra. The approach adopted here, however, most directly expresses what the
data is really telling us. We explore in detail the structure of the available
information and quantify exactly what features can be reconstructed and at what
statistical significance.Comment: 43 pages Revtex, 23 figure
A Search for Small-Scale Clumpiness in Dense Cores of Molecular Clouds
We have analyzed HCN(1-0) and CS(2-1) line profiles obtained with high
signal-to-noise ratios toward distinct positions in three selected objects in
order to search for small-scale structure in molecular cloud cores associated
with regions of high-mass star formation. In some cases, ripples were detected
in the line profiles, which could be due to the presence of a large number of
unresolved small clumps in the telescope beam. The number of clumps for regions
with linear scales of ~0.2-0.5 pc is determined using an analytical model and
detailed calculations for a clumpy cloud model; this number varies in the
range: ~2 10^4-3 10^5, depending on the source. The clump densities range from
~3 10^5-10^6 cm^{-3}, and the sizes and volume filling factors of the clumps
are ~(1-3) 10^{-3} pc and ~0.03-0.12. The clumps are surrounded by inter-clump
gas with densities not lower than ~(2-7) 10^4 cm^{-3}. The internal thermal
energy of the gas in the model clumps is much higher than their gravitational
energy. Their mean lifetimes can depend on the inter-clump collisional rates,
and vary in the range ~10^4-10^5 yr. These structures are probably connected
with density fluctuations due to turbulence in high-mass star-forming regions.Comment: 23 pages including 4 figures and 4 table
- …