63 research outputs found
Mantle-cell lymphoma genotypes identified with CGH to BAC microarrays define a leukemic subgroup of disease and predict patient outcome
To identify recurrent genomic changes in mantle cell lymphoma (MCL), we used high-resolution comparative genomic hybridization (CGH) to bacterial artificial chromosome (BAC) microarrays in 68 patients and 9 MCL-derived cell lines. Array CGH defined an MCL genomic signature distinct from other B-cell lymphomas, including deletions of 1p21 and 11q22.3-ATM gene with coincident 10p12-BMI1 gene amplification and 10p14 deletion, along with a previously unidentified loss within 9q21-q22. Specific genomic alterations were associated with different subgroups of disease. Notably, 11 patients with leukemic MCL showed a different genomic profile than nodal cases, including 8p21.3 deletion at tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor gene cluster (55% versus 19%; P = .01) and gain of 8q24.1 at MYC locus (46% versus 14%; P = .015). Additionally, leukemic MCL exhibited frequent IGVH mutation (64% versus 21%; P = .009) with preferential VH4-39 use (36% versus 4%; P = .005) and followed a more indolent clinical course. Blastoid variants, increased number of genomic gains, and deletions of P16/INK4a and TP53 genes correlated with poorer outcomes, while 1p21 loss was associated with prolonged survival (P = .02). In multivariate analysis, deletion of 9q21-q22 was the strongest predictor for inferior survival (hazard ratio [HR], 6; confidence interval [CI], 2.3 to 15.7). Our study highlights the genomic profile as a predictor for clinical outcome and suggests that "genome scanning" of chromosomes 1p21, 9q21-q22, 9p21.3-P16/INK4a, and 17p13.1-TP53 may be clinically useful in MCL
Epigenetic Signatures Associated with Different Levels of Differentiation Potential in Human Stem Cells
The therapeutic use of multipotent stem cells depends on their differentiation potential, which has been
shown to be variable for different populations. These differences are likely to be the result of key changes in their epigenetic
profiles
Insertion (22;9)(q11;q34q21) in a patient with chronic myeloid leukemia characterized by fluorescence in situ hybridization
An unusual cytogenetic rearrangement, described as ins(22;9)(q11;q34q21), was detected in a 49-year-old male patient diagnosed with chronic myeloid leukemia (CML). Reverse transcriptase polymerase chain reaction (RT-PCR) revealed a b3a2 fusion transcript. In order to confirm the cytogenetic findings and fully characterize the inverted insertion, we performed fluorescence in situ hybridization (FISH) assays using locus-specific and whole chromosome painting probes. Our FISH analysis showed the presence of the BCR/ABL fusion gene, verified the insertion and determined that the breakpoint on chromosome 22 where the insertion took place was located proximal to the BCR gene and distal to the TUPLE1 gene on 22q11
Comparative genomic hybridization and amplotyping by arbitrarily primed PCR in stage A B-CLL
Cytogenetic analysis is useful in the diagnosis and to assess prognosis of B-cell chronic lymphocytic leukemia (B-CLL). However, successful cytogenetics by standard techniques has been hindered by the low in vitro mitotic activity of the malignant B-cell population. Fluorescence in situ hybridization (FISH) has become a useful tool, but it does not provide an overall view of the aberrations. To overcome this hurdle, two DNA-based techniques have been tested in the present study: comparative genomic hybridization (CGH) and amplotyping by arbitrarily primed PCR (AP-PCR). Comparative genomic hybridization resolution depends upon the 400-bands of the human standard karyotype. AP-PCR allows detection of allelic losses and gains in tumor cells by PCR fingerprinting, thus its resolution is at the molecular level. Both techniques were performed in 23 patients with stage A B-CLL at diagnosis. The results were compared with FISH. The sensitivity of AP-PCR was greater than CGH (62% vs. 43%). The use of CGH combined with AP-PCR allowed to detect genetic abnormalities in 79% (15/19) of patients in whom G-banding was not informative, providing a global view of the aberrations in a sole experiment. This study shows that combining these two methods with FISH, makes possible a more precise genetic characterization of patients with B-CLL
GeneChip analyses point to novel pathogenetic mechanisms in mantle cell lymphoma
The translocation t(11;14)(q13;q32) is the genetic hallmark of mantle cell lymphoma (MCL) but is not sufficient for inducing lymphomagenesis. Here we performed genome-wide 100K GeneChip Mapping in 26 t(11;14)-positive MCL and six MCL cell lines. Partial uniparental disomy (pUPD) was shown to be a recurrent chromosomal event not only in MCL cell lines but also in primary MCL. Remarkably, pUPD affected recurrent targets of deletion like 11q, 13q and 17p. Moreover, we identified 12 novel regions of recurrent gain and loss as well as 12 high-level amplifications and eight homozygously deleted regions hitherto undescribed in MCL. Interestingly, GeneChip analyses identified different genes, encoding proteins involved in microtubule dynamics, such as MAP2, MAP6 and TP53, as targets for chromosomal aberration in MCL. Further investigation, including mutation analyses, fluorescence in situ hybridisation as well as epigenetic and expression studies, revealed additional aberrations frequently affecting these genes. In total, 19 of 20 MCL cases, which were subjected to genetic and epigenetic analyses, and five of six MCL cell lines harboured at least one aberration in MAP2, MAP6 or TP53. These findings provide evidence that alterations of microtubule dynamics might be one of the critical events in MCL lymphomagenesis contributing to chromosomal instability
Desarrollo de la técnica de FICTION como nueva herramienta para el diagnóstico precoz de cáncer de pulmón
El cáncer de pulmón es una de las causas de muerte más frecuentes en el mundo occidental. La supervivencia global de los pacientes no supera el 15% a los 5 años, debido principalmente a que la mayor parte de los casos se diagnostican en estadios avanzados. Además de la prevención primaria, mediante la reducción del consumo de tabaco, son necesarias nuevas tecnologías para el diagnóstico precoz de la enfermedad.
Estudios recientes han demostrado que el TAC helicoidal del tórax es efectivo en la detección de nódulos pulmonares malignos en estadios precoces. En la actualidad se está valorando su eficacia en series amplias de pacientes de alto riesgo.
Recientemente se ha desarrollado una nueva técnica de citogenética molecular, el FICTION (Fluorescence Immunophenotyping and Interphase Cytogenetics as a Tool for the Investigation of Neoplasms). Esta técnica permite el análisis simultáneo de marcadores inmunofenotípicos y alteraciones genéticas presentes en las células tumorales. El objetivo de nuestro proyecto es su puesta a punto para el estudio de muestras de esputo y lavado broncoalveolar de pacientes con cáncer de pulmón. El fin último es estudiar la posibilidad de que esta técnica pueda ser utilizada, junto con el TAC helicoidal, en programas de detección precoz de cáncer de pulmón, para pacientes de alto riesgo.
En este trabajo presentamos una revisión de la contribución de las distintas técnicas de citogenética al estudio del cáncer de pulmón y la metodología de trabajo que vamos a llevar a cabo en nuestro proyecto
Frequent and simultaneous epigenetic inactivation of TP53 pathway genes in acute lymphoblastic leukemia
Aberrant DNA methylation is one of the most frequent alterations in patients with Acute Lymphoblastic Leukemia (ALL).
Using methylation bead arrays we analyzed the methylation status of 807 genes implicated in cancer in a group of ALL
samples at diagnosis (n = 48). We found that 154 genes were methylated in more than 10% of ALL samples. Interestingly,
the expression of 13 genes implicated in the TP53 pathway was downregulated by hypermethylation. Direct or indirect
activation of TP53 pathway with 5-aza-29-deoxycitidine, Curcumin or Nutlin-3 induced an increase in apoptosis of ALL cells.
The results obtained with the initial group of 48 patients was validated retrospectively in a second cohort of 200 newly
diagnosed ALL patients. Methylation of at least 1 of the 13 genes implicated in the TP53 pathway was observed in 78% of
the patients, which significantly correlated with a higher relapse (p = 0.001) and mortality (p,0.001) rate being an
independent prognostic factor for disease-free survival (DFS) (p = 0.006) and overall survival (OS) (p = 0.005) in the
multivariate analysis. All these findings indicate that TP53 pathway is altered by epigenetic mechanisms in the majority of
ALL patients and correlates with prognosis. Treatments with compounds that may reverse the epigenetic abnormalities or
activate directly the p53 pathway represent a new therapeutic alternative for patients with ALL
Deregulation of the telomerase reverse transcriptase (TERT) gene by chromosomal translocations in B-cell malignancies
Sequence variants at the TERT-CLPTM1L locus in chromosome 5p have been recently associated with disposition for various cancers. Here we show that this locus including the gene encoding the telomerase reverse-transcriptase TERT at 5p13.33 is rarely but recurrently targeted by somatic chromosomal translocations to IGH and non-IG loci in B-cell neoplasms, including acute lymphoblastic leukemia, chronic lymphocytic leukemia, mantle cell lymphoma and splenic marginal zone lymphoma. In addition, cases with genomic amplification of TERT locus were identified. Tumors bearing chromosomal aberrations involving TERT showed higher TERT transcriptional expression and increased telomerase activity. These data suggest that deregulation of TERT gene by chromosomal abnormalities leading to increased telomerase activity might contribute to B-cell lymphomagenesis
Amplification of IGH/MYC fusion in clinically aggressive IGH/BCL2-positive germinal center B-cell lymphomas
Activation of an oncogene via its juxtaposition to the IGH locus by a chromosomal translocation or, less frequently, by genomic amplification is considered a major mechanism of B-cell lymphomagenesis. However, amplification of an IGH/oncogene fusion, coined a complicon, is a rare event in human cancers and has been associated with poor outcome and resistance to treatment. In this article are descriptions of two cases of germinal-center-derived B-cell lymphomas with IGH/BCL2 fusion that additionally displayed amplification of an IGH/MYC fusion. As shown by fluorescence in situ hybridization, the first case contained a IGH/MYC complicon in double minutes, whereas the second case showed a BCL2/IGH/MYC complicon on a der(8)t(8;14)t(14;18). Additional molecular cytogenetic and mutation analyses revealed that the first case also contained a chromosomal translocation affecting the BCL6 oncogene and a biallelic inactivation of TP53. The second case harbored a duplication of REL and acquired a translocation affecting IGL and a biallelic inactivation of TP53 during progression. Complicons affecting Igh/Myc have been reported previously in lymphomas of mouse models simultaneously deficient in Tp53 and in genes of the nonhomologous end-joining DNA repair pathway. To the best of our knowledge, this is the first time that IGH/MYC complicons have been reported in human lymphomas. Our findings imply that the two mechanisms resulting in MYC deregulation, that is, translocation and amplification, can occur simultaneously
- …