6,456 research outputs found

    The Renormalization Group Method and Quantum Groups: the postman always rings twice

    Get PDF
    We review some of our recent results concerning the relationship between the Real-Space Renormalization Group method and Quantum Groups. We show this relation by applying real-space RG methods to study two quantum group invariant Hamiltonians, that of the XXZ model and the Ising model in a transverse field (ITF) defined in an open chain with appropriate boundary terms. The quantum group symmetry is preserved under the RG transformation except for the appearence of a quantum group anomalous term which vanishes in the classical case. This is called {\em the quantum group anomaly}. We derive the new qRG equations for the XXZ model and show that the RG-flow diagram obtained in this fashion exhibits the correct line of critical points that the exact model has. In the ITF model the qRG-flow equations coincide with the tensor product decomposition of cyclic irreps of SUq(2)SU_q(2) with q4=1q^4=1.Comment: LATEX file, 21 pages, no figures. To appear in "From Field Theory to Quantum Groups", World Scientific. Proceedings to honor J.Lukierski in his 60th birthda

    Analytic Formulations of the Density Matrix Renormalization Group

    Full text link
    We present two new analytic formulations of the Density Matrix Renormalization Group Method. In these formulations we combine the block renormalization group (BRG) procedure with Variational and Fokker-Planck methods. The BRG method is used to reduce the lattice size while the latter are used to construct approximate target states to compute the block density matrix. We apply our DMRG methods to the Ising Model in a transverse field (ITF model) and compute several of its critical properties which are then compared with the old BRG results.Comment: LATEX file, 25 pages, 8 figures available upon reques

    The dimer-RVB State of the Four-Leg Heisenberg Ladder: Interference among Resonances

    Get PDF
    We study the ground state of the 4-leg spin ladder using a dimer-RVB ansatz and the Lanczos method. Besides the well known resonance mechanism between valence bond configurations we find novel interference effects among nearby resonances.Comment: 4 pages, RevTex, 7 eps fig

    The Matrix Product Approach to Quantum Spin Ladders

    Get PDF
    We present a manifestly rotational invariant formulation of the matrix product method valid for spin chains and ladders. We apply it to 2 legged spin ladders with spins 1/2, 1 and 3/2 and different magnetic structures labelled by the exchange coupling constants, which can be ferromagnetic or antiferromagnetic along the legs and the rungs of the ladder We compute ground state energy densities, correlation lengths and string order parameters. We present numerical evidence of the duality properties of the 3 different non ferromagnetic spin 1/2 ladders. We show that the long range topological order characteristic of isolated spin 1 chains is broken by the interchain coupling. The string order correlation function decays exponentially with a finite correlation length that we compute. A physical picture of the spin 1 ladder is given in terms of a collection of resonating spin 1 chains. Finally for ladders with spin equal or greater than 3/2 we define a class of AKLT states whose matrix product coefficients are given by 9-j symbols.Comment: REVTEX file, 16 pages, 12 figures, 6 Table
    • …
    corecore