26 research outputs found

    Evaluation of detailed aromatic mechanisms (MCMv3 and MCMv3.1) against environmental chamber data

    Get PDF
    International audienceA high quality dataset on the photo-oxidation of benzene, toluene, p-xylene and 1,3,5-trimethylbenzene has been obtained from experiments in the European Photoreactor (EUPHORE), a large outdoor environmental reaction chamber. The experiments were designed to test sensitive features of detailed aromatic mechanisms, and the dataset has been used to evaluate the performance of the Master Chemical Mechanism Version 3 (MCMv3). An updated version (MCMv3.1) was constructed based on recent experimental data, and details of its development are described in a companion paper. The MCMv3.1 aromatic mechanisms have also been evaluated using the EUPHORE dataset. Significant deficiencies have been identified in the mechanisms, in particular: 1) an over-estimation of the ozone concentration, 2) an under-estimation of the NO oxidation rate, 3) an under-estimation of OH. The use of MCMv3.1 improves the model-measurement agreement in some areas but significant discrepancies remain

    Measurements of photo-oxidation products from the reaction of a series of alkyl-benzenes with hydroxyl radicals during EXACT using comprehensive gas chromatography

    Get PDF
    Photo-oxidation products from the reaction of a series of alkyl-benzenes, (benzene, toluene, <i>p</i>-xylene and 1,3,5-trimethyl-benzene) with hydroxyl radicals in the presence of NO<sub>x</sub> have been investigated using comprehensive gas chromatography (GCxGC). A GCxGC system has been developed which utilises valve modulation and independent separations as a function of both volatility and polarity. A number of carbonyl-type compounds were identified during a series of reactions carried out at the European Photoreactor (EUPHORE), a large volume outdoor reaction chamber in Valencia, Spain. Experiments were carried as part of the EXACT project (<b>E</b>ffects of the o<b>X</b>idation of <b>A</b>romatic <b>C</b>ompounds in the <b>T</b>roposphere). Two litre chamber air samples were cryo-focused, with a sampling frequency of 30 minutes, allowing the evolution of species to be followed over oxidation periods of 3-6 hours. To facilitate product identification, several carbonyl compounds, which were possible products of the photo-oxidation, were synthesised and used as reference standards.<br> <br> For toluene reactions, observed oxygenated intermediates found included the co-eluting pair <font face='Symbol'>a</font>-angelicalactone/4-oxo-2-pentenal, maleic anhydride, citraconic anhydride, benzaldehyde and <i>p</i>-methyl benzoquinone. In the <i>p</i>-xylene experiment, the products identified were E/Z-hex-3-en-2,5-dione and citraconic anhydride. For 1,3,5-TMB reactions, the products identified were 3,5-dimethylbenzaldehyde, 3,5-dimethyl-3H-furan-2-one and 3-methyl-5-methylene-5H-furan-2-one. Preliminary quantification was carried out on identified compounds using liquid standards. Comparison of FTIR and GCxGC for the measurement of the parent aromatics generally showed good agreement. Comparison of the concentrations observed by GCxGC to concentration-time profiles simulated using the Master Chemical Mechanism, MCMv3, demonstrates that this mechanism significantly over-predicts the concentrations of many product compounds and highlights the uncertainties which exist in our understanding of the atmospheric oxidation of aromatics

    Validation of the calibration of a laser-induced fluorescence instrument for the measurement of OH radicals in the atmosphere

    Get PDF
    An assessment of the accuracy of OH concentrations measured in a smog chamber by a calibrated laser-induced fluorescence (LIF) instrument has been made, in the course of 9 experiments performed to study the photo-oxidation of benzene, toluene, 1,3,5-trimethylbenzene, para-xylene, ortho-cresol and ethene at the European Photoreactor facility (EUPHORE). The LIF system was calibrated via the water photolysis / ozone actinometry approach. OH concentrations were inferred from the instantaneous rate of removal of each hydrocarbon species (measured by FTIR or HPLC) via the appropriate rate coefficient for their reaction with OH, and compared with those obtained from the LIF system. Good agreement between the two approaches was found for all species with the exception of 1,3,5-trimethylbenzene, for which OH concentrations inferred from hydrocarbon removal were a factor of 3 lower than those measured by the LIF system. From the remaining 8 experiments, an overall value of 1.15&plusmn;0.13 (&plusmn;1&sigma;) was obtained for [OH]LIF / [OH]Hydrocarbon Decay, compared with the estimated uncertainty in the accuracy of the water photolysis / ozone actinometry OH calibration technique of 26% (1&sigma;)

    Validation of the calibration of a laser-induced fluorescence instrument for the measurement of OH radicals in the atmosphere

    No full text
    An assessment of the accuracy of OH concentrations measured in a smog chamber by a calibrated laser-induced fluorescence (LIF) instrument has been made, in the course of 9 experiments performed to study the photo-oxidation of benzene, toluene, 1,3,5-trimethylbenzene, paraxylene, ortho-cresol and ethene at the European Photoreactor facility (EUPHORE). The LIF system was calibrated via the water photolysis / ozone actinometry approach. OH concentrations were inferred from the instantaneous rate of removal of each hydrocarbon species (measured by FTIR or HPLC) via the appropriate rate coefficient for their reaction with OH, and compared with those obtained from the LIF system. Good agreement between the two approaches was found for all species with the exception of 1,3,5-trimethylbenzene, for which OH concentrations inferred from hydrocarbon removal were a factor of 3 lower than those measured by the LIF system. From the remaining 8 experiments, an overall value of 1.15±0.13 (±1σ) was obtained for [OH]LIF / [OH]HydrocarbonDecay, compared with the estimated uncertainty in the accuracy of the water photolysis / ozone actinometry OH calibration technique of 26% (1 σ).</p
    corecore