1,384 research outputs found

    Microcanonical Approach to the Simulation of First-Order Phase Transitions

    Full text link
    A generalization of the microcanonical ensemble suggests a simple strategy for the simulation of first order phase transitions. At variance with flat-histogram methods, there is no iterative parameters optimization, nor long waits for tunneling between the ordered and the disordered phases. We test the method in the standard benchmark: the Q-states Potts model (Q=10 in 2 dimensions and Q=4 in 3 dimensions), where we develop a cluster algorithm. We obtain accurate results for systems with more than one million of spins, outperforming flat-histogram methods that handle up to tens of thousands of spins.Comment: 4 pages, 3 postscript figure

    Testing statics-dynamics equivalence at the spin-glass transition in three dimensions

    Get PDF
    The statics-dynamics correspondence in spin glasses relate non-equilibrium results on large samples (the experimental realm) with equilibrium quantities computed on small systems (the typical arena for theoretical computations). Here we employ statics-dynamics equivalence to study the Ising spin-glass critical behavior in three dimensions. By means of Monte Carlo simulation, we follow the growth of the coherence length (the size of the glassy domains), on lattices too large to be thermalized. Thanks to the large coherence lengths we reach, we are able to obtain accurate results in excellent agreement with the best available equilibrium computations. To do so, we need to clarify the several physical meanings of the dynamic exponent close to the critical temperature.Comment: Version to appear in Physical Review

    Mean-value identities as an opportunity for Monte Carlo error reduction

    Get PDF
    In the Monte Carlo simulation of both Lattice field-theories and of models of Statistical Mechanics, identities verified by exact mean-values such as Schwinger-Dyson equations, Guerra relations, Callen identities, etc., provide well known and sensitive tests of thermalization bias as well as checks of pseudo random number generators. We point out that they can be further exploited as "control variates" to reduce statistical errors. The strategy is general, very simple, and almost costless in CPU time. The method is demonstrated in the two dimensional Ising model at criticality, where the CPU gain factor lies between 2 and 4.Comment: 10 pages, 2 tables. References updated and typos correcte

    Optimized Monte Carlo Method for glasses

    Get PDF
    A new Monte Carlo algorithm is introduced for the simulation of supercooled liquids and glass formers, and tested in two model glasses. The algorithm is shown to thermalize well below the Mode Coupling temperature and to outperform other optimized Monte Carlo methods. Using the algorithm, we obtain finite size effects in the specific heat. This effect points to the existence of a large correlation length measurable in equal time correlation functions.Comment: Proceedings of "X International workshop on Disordered Systems" held in Molveno (Italy), March 200

    Rejuvenation and Memory in model Spin Glasses in 3 and 4 dimensions

    Full text link
    We numerically study aging for the Edwards-Anderson Model in 3 and 4 dimensions using different temperature-change protocols. In D=3, time scales a thousand times larger than in previous work are reached with the SUE machine. Deviations from cumulative aging are observed in the non monotonic time behavior of the coherence length. Memory and rejuvenation effects are found in a temperature-cycle protocol, revealed by vanishing effective waiting times. Similar effects are reported for the D=3$site-diluted ferromagnetic Ising model (without chaos). However, rejuvenation is reduced if off-equilibrium corrections to the fluctuation-dissipation theorem are considered. Memory and rejuvenation are quantitatively describable in terms of the growth regime of the spin-glass coherence length.Comment: Extended protocols. Accepted in Phys. Rev. B. 10 postscript figure

    Finite size effects in the specific heat of glass-formers

    Get PDF
    We report clear finite size effects in the specific heat and in the relaxation times of a model glass former at temperatures considerably smaller than the Mode Coupling transition. A crucial ingredient to reach this result is a new Monte Carlo algorithm which allows us to reduce the relaxation time by two order of magnitudes. These effects signal the existence of a large correlation length in static quantities.Comment: Proceeding of "3rd International Workshop on Complex Systems". Sendai (Japan). To appear on AIP Conference serie

    Unraveling Quantum Annealers using Classical Hardness

    Get PDF
    Recent advances in quantum technology have led to the development and manufacturing of experimental programmable quantum annealing optimizers that contain hundreds of quantum bits. These optimizers, named `D-Wave' chips, promise to solve practical optimization problems potentially faster than conventional `classical' computers. Attempts to quantify the quantum nature of these chips have been met with both excitement and skepticism but have also brought up numerous fundamental questions pertaining to the distinguishability of quantum annealers from their classical thermal counterparts. Here, we propose a general method aimed at answering these, and apply it to experimentally study the D-Wave chip. Inspired by spin-glass theory, we generate optimization problems with a wide spectrum of `classical hardness', which we also define. By investigating the chip's response to classical hardness, we surprisingly find that the chip's performance scales unfavorably as compared to several analogous classical algorithms. We detect, quantify and discuss purely classical effects that possibly mask the quantum behavior of the chip.Comment: 12 pages, 9 figure

    Advantages of Unfair Quantum Ground-State Sampling

    Get PDF
    The debate around the potential superiority of quantum annealers over their classical counterparts has been ongoing since the inception of the field by Kadowaki and Nishimori close to two decades ago. Recent technological breakthroughs in the field, which have led to the manufacture of experimental prototypes of quantum annealing optimizers with sizes approaching the practical regime, have reignited this discussion. However, the demonstration of quantum annealing speedups remains to this day an elusive albeit coveted goal. Here, we examine the power of quantum annealers to provide a different type of quantum enhancement of practical relevance, namely, their ability to serve as useful samplers from the ground-state manifolds of combinatorial optimization problems. We study, both numerically by simulating ideal stoquastic and non-stoquastic quantum annealing processes, and experimentally, using a commercially available quantum annealing processor, the ability of quantum annealers to sample the ground-states of spin glasses differently than classical thermal samplers. We demonstrate that i) quantum annealers in general sample the ground-state manifolds of spin glasses very differently than thermal optimizers, ii) the nature of the quantum fluctuations driving the annealing process has a decisive effect on the final distribution over ground-states, and iii) the experimental quantum annealer samples ground-state manifolds significantly differently than thermal and ideal quantum annealers. We illustrate how quantum annealers may serve as powerful tools when complementing standard sampling algorithms.Comment: 13 pages, 11 figure

    Vibrational spectra in glasses

    Get PDF
    The findings of X-ray and neutron scattering experiments on amorphous systems are interpreted within the framework of the theory of Euclidean random matrices. This allows to take into account the topological nature of the disorder, a key ingredient which strongly affects the vibrational spectra of those systems. We present a resummation scheme for a perturbative expansion in the inverse particle density, allowing an accurate analytical computation of the dynamical structure factor within the range of densities encountered in real systems.Comment: Talk given at the '8th International Workshop on Disordered Systems' Andalo, Trento, 12-15 March 200

    Temperature chaos in 3D Ising Spin Glasses is driven by rare events

    Get PDF
    Temperature chaos has often been reported in literature as a rare-event driven phenomenon. However, this fact has always been ignored in the data analysis, thus erasing the signal of the chaotic behavior (still rare in the sizes achieved) and leading to an overall picture of a weak and gradual phenomenon. On the contrary, our analysis relies on a large-deviations functional that allows to discuss the size dependencies. In addition, we had at our disposal unprecedentedly large configurations equilibrated at low temperatures, thanks to the Janus computer. According to our results, when temperature chaos occurs its effects are strong and can be felt even at short distances.Comment: 5 pages, 5 figure
    corecore