We numerically study aging for the Edwards-Anderson Model in 3 and 4
dimensions using different temperature-change protocols. In D=3, time scales a
thousand times larger than in previous work are reached with the SUE machine.
Deviations from cumulative aging are observed in the non monotonic time
behavior of the coherence length. Memory and rejuvenation effects are found in
a temperature-cycle protocol, revealed by vanishing effective waiting times.
Similar effects are reported for the D=3$site-diluted ferromagnetic Ising model
(without chaos). However, rejuvenation is reduced if off-equilibrium
corrections to the fluctuation-dissipation theorem are considered. Memory and
rejuvenation are quantitatively describable in terms of the growth regime of
the spin-glass coherence length.Comment: Extended protocols. Accepted in Phys. Rev. B. 10 postscript figure