45 research outputs found

    Fetal Window of Vulnerability to Airborne Polycyclic Aromatic Hydrocarbons on Proportional Intrauterine Growth Restriction

    Get PDF
    Background: Although the entire duration of fetal development is generally considered a highly susceptible period, it is of public health interest to determine a narrower window of heightened vulnerability to polycyclic aromatic hydrocarbons (PAHs) in humans. We posited that exposure to PAHs during the first trimester impairs fetal growth more severely than a similar level of exposure during the subsequent trimesters. Methods: In a group of healthy, non-smoking pregnant women with no known risks of adverse birth outcomes, personal exposure to eight airborne PAHs was monitored once during the second trimester for the entire cohort (n = 344), and once each trimester within a subset (n = 77). Both air monitoring and self-reported PAH exposure data were used in order to statistically estimate PAH exposure during the entire gestational period for each individual newborn. Results: One natural-log unit increase in prenatal exposure to the eight summed PAHs during the first trimester was associated with the largest decrement in the Fetal Growth Ratio (FGR) (23%, 95 % Confidence Interval (CI), 25 to20%), birthweight (2105 g, 95 % CI, 2188 to 222 g), and birth length (20.78 cm, 95 % CI, 21.30 to 20.26 cm), compared to the unit effects of PAHs during the subsequent trimesters, after accounting for confounders. Furthermore, a unit exposure during the first trimester was associated with the largest elevation in Cephalization Index (head to weight ratio) (3 mm/g, 95 % CI, 1 to 5 mm/g). PAH exposure was not associated with evidence of asymmetric growth restriction in this cohort

    Low birth weight in offspring of women with depressive and anxiety symptoms during pregnancy: results from a population based study in Bangladesh

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is a high prevalence of antepartum depression and low birth weight (LBW) in Bangladesh. In high- and low-income countries, prior evidence linking maternal depressive and anxiety symptoms with infant LBW is conflicting. There is no research on the association between maternal mental disorders and LBW in Bangladesh. This study aims to investigate the independent effect of maternal antepartum depressive and anxiety symptoms on infant LBW among women in a rural district of Bangladesh.</p> <p>Methods</p> <p>A population-based sample of 720 pregnant women from two rural subdistricts was assessed for symptoms of antepartum depression, using the Edinburgh Postpartum Depression Scale (EPDS), and antepartum anxiety, using the State Trait Anxiety Inventory (STAI), and followed for 6-8 months postpartum. Infant birth weight of 583 (81%) singleton live babies born at term (≥37 weeks of pregnancy) was measured within 48 hours of delivery. Baseline data provided socioeconomic, anthropometric, reproductive, obstetric, and social support information. Trained female interviewers carried out structured interviews. Chi-square, Fisher's exact, and independent-sample <it>t </it>tests were done as descriptive statistics, and a multiple logistic regression model was used to identify predictors of LBW.</p> <p>Results</p> <p>After adjusting for potential confounders, depressive (OR = 2.24; 95% CI 1.37-3.68) and anxiety (OR = 2.08; 95% CI 1.30-3.25) symptoms were significantly associated with LBW (≤2.5 kg). Poverty, maternal malnutrition, and support during pregnancy were also associated with LBW.</p> <p>Conclusions</p> <p>This study provides evidence that maternal depressive and anxiety symptoms during pregnancy predict the LBW of newborns and replicates results found in other South Asian countries. Policies aimed at the detection and effective management of depressive and anxiety symptoms during pregnancy may reduce the burden on mothers and also act as an important measure in the prevention of LBW among offspring in Bangladesh.</p

    Histone Variants and Their Post-Translational Modifications in Primary Human Fat Cells

    Get PDF
    Epigenetic changes related to human disease cannot be fully addressed by studies of cells from cultures or from other mammals. We isolated human fat cells from subcutaneous abdominal fat tissue of female subjects and extracted histones from either purified nuclei or intact cells. Direct acid extraction of whole adipocytes was more efficient, yielding about 100 µg of protein with histone content of 60% –70% from 10 mL of fat cells. Differential proteolysis of the protein extracts by trypsin or ArgC-protease followed by nanoLC/MS/MS with alternating CID/ETD peptide sequencing identified 19 histone variants. Four variants were found at the protein level for the first time; particularly HIST2H4B was identified besides the only H4 isoform earlier known to be expressed in humans. Three of the found H2A potentially organize small nucleosomes in transcriptionally active chromatin, while two H2AFY variants inactivate X chromosome in female cells. HIST1H2BA and three of the identified H1 variants had earlier been described only as oocyte or testis specific histones. H2AFX and H2AFY revealed differential and variable N-terminal processing. Out of 78 histone modifications by acetylation/trimethylation, methylation, dimethylation, phosphorylation and ubiquitination, identified from six subjects, 68 were found for the first time. Only 23 of these modifications were detected in two or more subjects, while all the others were individual specific. The direct acid extraction of adipocytes allows for personal epigenetic analyses of human fat tissue, for profiling of histone modifications related to obesity, diabetes and metabolic syndrome, as well as for selection of individual medical treatments

    Developmental Programming Mediated by Complementary Roles of Imprinted Grb10 in Mother and Pup

    Get PDF
    Developmental programming links growth in early life with health status in adulthood. Although environmental factors such as maternal diet can influence the growth and adult health status of offspring, the genetic influences on this process are poorly understood. Using the mouse as a model, we identify the imprinted gene Grb10 as a mediator of nutrient supply and demand in the postnatal period. The combined actions of Grb10 expressed in the mother, controlling supply, and Grb10 expressed in the offspring, controlling demand, jointly regulate offspring growth. Furthermore, Grb10 determines the proportions of lean and fat tissue during development, thereby influencing energy homeostasis in the adult. Most strikingly, we show that the development of normal lean/fat proportions depends on the combined effects of Grb10 expressed in the mother, which has the greater effect on offspring adiposity, and Grb10 expressed in the offspring, which influences lean mass. These distinct functions of Grb10 in mother and pup act complementarily, which is consistent with a coadaptation model of imprinting evolution, a model predicted but for which there is limited experimental evidence. In addition, our findings identify Grb10 as a key genetic component of developmental programming, and highlight the need for a better understanding of mother-offspring interactions at the genetic level in predicting adult disease risk

    Language development after cochlear implantation: an epigenetic model

    Get PDF
    Growing evidence supports the notion that dynamic gene expression, subject to epigenetic control, organizes multiple influences to enable a child to learn to listen and to talk. Here, we review neurobiological and genetic influences on spoken language development in the context of results of a longitudinal trial of cochlear implantation of young children with severe to profound sensorineural hearing loss in the Childhood Development after Cochlear Implantation study. We specifically examine the results of cochlear implantation in participants who were congenitally deaf (N = 116). Prior to intervention, these participants were subject to naturally imposed constraints in sensory (acoustic–phonologic) inputs during critical phases of development when spoken language skills are typically achieved rapidly. Their candidacy for a cochlear implant was prompted by delays (n = 20) or an essential absence of spoken language acquisition (n = 96). Observations thus present an opportunity to evaluate the impact of factors that influence the emergence of spoken language, particularly in the context of hearing restoration in sensitive periods for language acquisition. Outcomes demonstrate considerable variation in spoken language learning, although significant advantages exist for the congenitally deaf children implanted prior to 18 months of age. While age at implantation carries high predictive value in forecasting performance on measures of spoken language, several factors show significant association, particularly those related to parent–child interactions. Importantly, the significance of environmental variables in their predictive value for language development varies with age at implantation. These observations are considered in the context of an epigenetic model in which dynamic genomic expression can modulate aspects of auditory learning, offering insights into factors that can influence a child’s acquisition of spoken language after cochlear implantation. Increased understanding of these interactions could lead to targeted interventions that interact with the epigenome to influence language outcomes with intervention, particularly in periods in which development is subject to time-sensitive experience

    Analysis of the rat hypothalamus proteome by data-independent label-free LC-MS/MS.

    No full text
    Studies of neuronal, endocrine, and metabolic disorders would be facilitated by characterization of the hypothalamus proteome. Protein extracts prepared from 16 whole rat hypothalami were measured by data-independent label-free nano LC-MS/MS. Peptide features were detected, aligned, and searched against a rat Swiss-Prot database using ProteinLynx Global Server v.2.5. The final combined dataset comprised 21 455 peptides, corresponding to 622 unique proteins, each identified by a minimum of two distinct peptides. The majority of the proteins (69%) were cytosolic, and 16% were membrane proteins. Important proteins involved in neurological and synaptic function were identified including several members of the Ras-related protein family and proteins involved in glutamate biosynthesis

    Analysis of the rat hypothalamus proteome by data-independent label-free LC-MS/MS.

    No full text
    Studies of neuronal, endocrine, and metabolic disorders would be facilitated by characterization of the hypothalamus proteome. Protein extracts prepared from 16 whole rat hypothalami were measured by data-independent label-free nano LC-MS/MS. Peptide features were detected, aligned, and searched against a rat Swiss-Prot database using ProteinLynx Global Server v.2.5. The final combined dataset comprised 21 455 peptides, corresponding to 622 unique proteins, each identified by a minimum of two distinct peptides. The majority of the proteins (69%) were cytosolic, and 16% were membrane proteins. Important proteins involved in neurological and synaptic function were identified including several members of the Ras-related protein family and proteins involved in glutamate biosynthesis
    corecore