6,463 research outputs found
Extended van Royen-Weisskopf formalism for lepton-antilepton meson decay widths within non-relativistic quark models
The classical van Royen-Weisskopf formula for the decay width of a meson into
a lepton-antilepton pair is modified in order to include non-zero quark
momentum contributions within the meson as well as relativistic effects.
Besides, a phenomenological electromagnetic density for quarks is introduced.
The meson wave functions are obtained from two different models: a chiral
constituent quark model and a quark potential model including instanton
effects. The modified van Royen-Weisskopf formula is found to improve
systematically the results for the widths, giving an overall good description
of all known decays.Comment: 22 pages, 3 figures, RevTex, epsfig. To be published in Nucl. Phys.
Bohr-Sommerfeld quantization and meson spectroscopy
We use the Bohr-Sommerfeld quantization approach in the context of
constituent quark models. This method provides, for the Cornell potential,
analytical formulae for the energy spectra which closely approximate numerical
exact calculations performed with the Schrodinger or the spinless Salpeter
equations. The Bohr-Sommerfeld quantization procedure can also be used to
calculate other observables such as r.m.s. radius or wave function at the
origin. Asymptotic dependence of these observables on quantum numbers are also
obtained in the case of potentials which behave asymptotically as a power-law.
We discuss the constraints imposed by these formulae on the dynamics of the
quark-antiquark interaction.Comment: 13 page
When do colliding bubbles produce an expanding universe?
It is intriguing to consider the possibility that the Big Bang of the
standard (3+1) dimensional cosmology originated from the collision of two
branes within a higher dimensional spacetime, leading to the production of a
large amount of entropy. In this paper we study, subject to certain
well-defined assumptions, under what conditions such a collision leads to an
expanding universe. We assume the absence of novel physics, so that ordinary
(4+1) -dimensional Einstein gravity remains a valid approximation. It is
necessary that the fifth dimension not become degenerate at the moment of
collision. First the case of a symmetric collision of infinitely thin branes
having a hyperbolic or flat spatial geometry is considered. We find that a
symmetric collision results in a collapsing universe on the final brane unless
the pre-existing expansion rate in the bulk just prior to the collision is
sufficiently large in comparison to the momentum transfer in the fifth
dimension. Such prior expansion may either result from negative spatial
curvature or from a positive five-dimensional cosmological constant. The
relevance of these findings to the Colliding Bubble Braneworld Universe
scenario is discussed. Finally, results from a numerical study of colliding
thick-wall branes is presented, which confirm the results of the thin-wall
approximation.Comment: 24 pages, 13 figures. Minor changes and references include
Neutrino Interactions at Ultrahigh Energies
We report new calculations of the cross sections for deeply inelastic
neutrino-nucleon scattering at neutrino energies between 10^{9}\ev and
10^{21}\ev. We compare with results in the literature and assess the
reliability of our predictions. For completeness, we briefly review the cross
sections for neutrino interactions with atomic electrons, emphasizing the role
of the -boson resonance in interactions for neutrino
energies in the neighborhood of 6.3\pev. Adopting model predictions for
extraterrestrial neutrino fluxes from active galactic nuclei, gamma-ray
bursters, and the collapse of topological defects, we estimate event rates in
large-volume water \v{C}erenkov detectors and large-area ground arrays.Comment: 32 pages, 11 figures, uses RevTeX and boxedep
Warped Reheating in Multi-Throat Brane Inflation
We investigate in some quantitative details the viability of reheating in
multi-throat brane inflationary scenarios by estimating and comparing the time
scales for the various processes involved. We also calculate within
perturbative string theory the decay rate of excited closed strings into KK
modes and compare with that of their decay into gravitons; we find that in the
inflationary throat the former is preferred. We also find that over a small but
reasonable range of parameters of the background geometry, these KK modes will
preferably tunnel to another throat (possibly containing the Standard Model)
instead of decaying to gravitons due largely to their suppressed coupling to
the bulk gravitons. Once tunneled, the same suppressed coupling to the
gravitons again allows them to reheat the Standard Model efficiently. We also
consider the effects of adding more throats to the system and find that for
extra throats with small warping, reheating still seems viable.Comment: 29 pages, 4 figures, discussions on closed string decay expanded,
references adde
Analysis of the immune system of multiple myeloma patients achieving long-term disease control by multidimensional flow cytometry
Spanish Myeloma Group (GEM) and Grupo Castellano-Leones de Gammapatias Monoclonales, cooperative study groups: et al.Multiple myeloma remains largely incurable. However, a few patients experience more than 10 years of relapsefree survival and can be considered as operationally cured. Interestingly, long-term disease control in multiple myeloma is not restricted to patients with a complete response, since some patients revert to having a profile of monoclonal gammopathy of undetermined significance. We compared the distribution of multiple compartments of lymphocytes and dendritic cells in the bone marrow and peripheral blood of multiple myeloma patients with long-term disease control (n=28), patients with newly diagnosed monoclonal gammopathy of undetermined significance (n=23), patients with symptomatic multiple myeloma (n=23), and age-matched healthy adults (n=10). Similarly to the patients with monoclonal gammopathy of undetermined significance and symptomatic multiple myeloma, patients with long-term disease control showed an expansion of cytotoxic CD8 + T cells and natural killer cells. However, the numbers of bone marrow T-regulatory cells were lower in patients with long-term disease control than in those with symptomatic multiple myeloma. It is noteworthy that B cells were depleted in patients with monoclonal gammopathy of undetermined significance and in those with symptomatic multiple myeloma, but recovered in both the bone marrow and peripheral blood of patients with long-term disease control, due to an increase in normal bone marrow B-cell precursors and plasma cells, as well as pre-germinal center peripheral blood B cells. The number of bone marrow dendritic cells and tissue macrophages differed significantly between patients with long-term disease control and those with symptomatic multiple myeloma, with a trend to cell count recovering in the former group of patients towards levels similar to those found in healthy adults. In summary, our results indicate that multiple myeloma patients with long-term disease control have a constellation of unique immune changes favoring both immune cytotoxicity and recovery of B-cell production and homing, suggesting improved immune surveillance.This work was supported by the Cooperative Research Thematic Network (RTICCs; RD06/0020/0006 and G03/136), Instituto de Salud Carlos III/ Subdirección General de Investigación Sanitaria (FIS: PI060339; 06/1354; 02/0905; 01/0089/01-02;
PS09/01897/01370) and Consejeria de Educacion (GR37) and Consejería de Sanidad, Junta de Castilla y León, Valladolid, Spain (557/A/10). The authors also thank the Fundación Carolina-BBVA for supporting and promoting the exchange of
medical researchers from Latin America to Spain.Peer Reviewe
Fibre Inflation: Observable Gravity Waves from IIB String Compactifications
We introduce a simple string model of inflation, in which the inflaton field
can take trans-Planckian values while driving a period of slow-roll inflation.
This leads naturally to a realisation of large field inflation, inasmuch as the
inflationary epoch is well described by the single-field scalar potential . Remarkably, for a broad class of vacua
all adjustable parameters enter only through the overall coefficient , and
in particular do not enter into the slow-roll parameters. Consequently these
are determined purely by the number of \e-foldings, , and so are not
independent: . This implies similar
relations among observables like the primordial scalar-to-tensor amplitude,
, and the scalar spectral tilt, : . is
itself more model-dependent since it depends partly on the post-inflationary
reheat history. In a simple reheating scenario a reheating temperature of
GeV gives , corresponding to and , within reach of future observations. The model is
an example of a class that arises naturally in the context of type IIB string
compactifications with large-volume moduli stabilisation, and takes advantage
of the generic existence there of Kahler moduli whose dominant appearance in
the scalar potential arises from string loop corrections to the Kahler
potential. The inflaton field is a combination of Kahler moduli of a K3-fibered
Calabi-Yau manifold. We believe there are likely to be a great number of models
in this class -- `high-fibre models' -- in which the inflaton starts off far
enough up the fibre to produce observably large primordial gravity waves.Comment: Extended calculations beyond the leading approximations, including
numerical integrations of multi-field evolution; Display an example with ; Simplify the discussion of large fields; Corrected minor errors and
typos; Added references; 41 pages LaTeX, 25 figure
Shift Symmetry and Inflation in Supergravity
We consider models of inflation in supergravity with a shift symmetry. We
focus on models with one moduli and one inflaton field. The presence of this
symmetry guarantees the existence of a flat direction for the inflaton field.
Mildly breaking the shift symmetry using a superpotential which depends not
only on the moduli but also on the inflaton field allows one to lift the
inflaton flat direction. Along the inflaton direction, the eta-problem is
alleviated. Combining the KKLT mechanism for moduli stabilization and a shift
symmetry breaking superpotential of the chaotic inflation type, we find models
reminiscent of ``mutated hybrid inflation'' where the inflationary trajectory
is curved in the moduli--inflaton plane. We analyze the phenomenology of these
models and stress their differences with both chaotic and hybrid inflation.Comment: 29 pages, 13 figure
- …
