4,136 research outputs found

    Echo of the Quantum Bounce

    Get PDF
    We identify a signature of quantum gravitational effects that survives from the early universe to the current era: Fluctuations of quantum fields as seen by comoving observers are significantly influenced by the history of the early universe. In particular we show how the existence (or not) of a quantum bounce leaves a trace in the background quantum noise that is not damped and would be non-negligible even nowadays. Furthermore, we estimate an upper bound for the typical energy and length scales where quantum effects are relevant. We discuss how this signature might be observed and therefore used to build falsifiability tests of quantum gravity theories.Comment: Revtex4.1. 2 Figures. V2: Content extended and edited to match published versio

    The Quantum Echo of the Early Universe

    Get PDF
    We show that the fluctuations of quantum fields as seen by late comoving observers are significantly influenced by the history of the early Universe, and therefore they transmit information about the nature of spacetime in timescales when quantum gravitational effects were non-negligible. We discuss how this may be observable even nowadays, and thus used to build falsifiability tests of quantum gravity theories.Comment: 3 pages. 2 Figures. Proceedings Theory Canada 9. Published in Canadian Journal of Physics. (http://www.nrcresearchpress.com/doi/abs/10.1139/cjp-2014-0567

    Violation of the strong Huygen's principle and timelike signals from the early Universe

    Get PDF
    We analyze the implications of the violations of the strong Huygens principle in the transmission of information from the early universe to the current era via massless fields. We show that much more information reaches us through timelike channels (not mediated by real photons) than it is carried by rays of light, which are usually regarded as the only carriers of information.Comment: 5 pages, 2 figures. RevTeX 4.1. V2: Updated to match published version. Previous title "A glimpse of the early universe without real light" modified to match Physical Review Letters published versio

    Physical evolution in Loop Quantum Cosmology: The example of vacuum Bianchi I

    Get PDF
    We use the vacuum Bianchi I model as an example to investigate the concept of physical evolution in Loop Quantum Cosmology (LQC) in the absence of the massless scalar field which has been used so far in the literature as an internal time. In order to retrieve the system dynamics when no such a suitable clock field is present, we explore different constructions of families of unitarily related partial observables. These observables are parameterized, respectively, by: (i) one of the components of the densitized triad, and (ii) its conjugate momentum; each of them playing the role of an evolution parameter. Exploiting the properties of the considered example, we investigate in detail the domains of applicability of each construction. In both cases the observables possess a neat physical interpretation only in an approximate sense. However, whereas in case (i) such interpretation is reasonably accurate only for a portion of the evolution of the universe, in case (ii) it remains so during all the evolution (at least in the physically interesting cases). The constructed families of observables are next used to describe the evolution of the Bianchi I universe. The performed analysis confirms the robustness of the bounces, also in absence of matter fields, as well as the preservation of the semiclassicality through them. The concept of evolution studied here and the presented construction of observables are applicable to a wide class of models in LQC, including quantizations of the Bianchi I model obtained with other prescriptions for the improved dynamics.Comment: RevTex4, 22 pages, 4 figure

    MEMS enabled Fabry-Perot cavity for cQED experiments

    Get PDF
    The development of novel experimental techniques in atomic physics is allowing for the manipulation and control of atoms in structured silicon chips. These new techniques to manipulate atoms in a chip require building micro systems on chip that support actuation, alignment control and tunability for each micro component, which requires a significant integration effort. One example of a new experimental technique in atomic physics is the realization of optical cavities which is a very attractive model for quantum information and communication, because it permits the study of light-matter effect. The important exigency of an integrated micro cavity consisting of a micro mirror and a fiber optics cable are; alignment between them to form a small cavity volume and actuation to allow for adjusment of the cavity length. In this Master thesis the fabrication of 1-D v-shape or chevron thermal actuator is proposed based on the following characteristics: the actuator exploits the thermal expansion property of silicon to generate mechanical actuation, offers linear in-plane displacement, large force in small area compared to other actuators schemes and a shuttle that is capable of carrying an optical fiber that creates an optical cavity between it and a micro-mirror. Additionally, fabrication and characterization techniques are also described for the highly reflective (99.9988\\%) micro-mirrors

    Chemical Abundances of Planetary Nebulae in the Substructures of M31

    Full text link
    We present deep spectroscopy of planetary nebulae (PNe) that are associated with the substructures of the Andromeda Galaxy (M31). The spectra were obtained with the OSIRIS spectrograph on the 10.4 m GTC. Seven targets were selected for the observations, three in the Northern Spur and four associated with the Giant Stream. The most distant target in our sample, with a rectified galactocentric distance >100 kpc, was the first PN discovered in the outer streams of M31. The [O III] 4363 auroral line was well detected in the spectra of all targets, enabling electron temperature determination. Ionic abundances are derived based on the [O III] temperatures, and elemental abundances of helium, nitrogen, oxygen, neon, sulfur, and argon are estimated. The relatively low N/O and He/H ratios as well as abundance ratios of alpha-elements indicate that our target PNe might belong to populations as old as ~2 Gyr. Our PN sample, including the current seven and the previous three observed by Fang et al., have rather homogeneous oxygen abundances. The study of abundances and the spatial and kinematical properties of our sample leads to the tempting conclusion that their progenitors might belong to the same stellar population, which hints at a possibility that the Northern Spur and the Giant Stream have the same origin. This may be explained by the stellar orbit proposed by Merrett et al. Judging from the position and kinematics, we emphasize that M32 might be responsible for the two substructures. Deep spectroscopy of PNe in M32 will help to assess this hypothesis.Comment: Accepted for publication in the ApJ. 23 pages, including 13 figures and 7 table
    • …
    corecore