5 research outputs found

    Plasma chylomicrons transport dietary OVA.

    No full text
    <p>Fasted mice were gavaged with 0.2 ml LCT-containing emulsions also containing 25 mg OVA. Plasma was isolated 1 h later, and 55 ”l were fractionated via FPLC. The grey line of the chromatogram shows the elution profile of a mouse injected i.p. with Poloxamer P-407 1 h prior to gavage to inhibit chylomicron clearance, which caused a milky plasma appearance (inset) and a greatly increased first peak. The solid line shows the elution profile of a mouse not previously injected with Poloxamer P-407. The fractions of this mouse, indicated by the vertical separators, were subjected to immunoprecipitation for detection of OVA (lower panel).The experiment was repeated three times with similar outcomes.</p

    Uptake and secretion of OVA in association with chylomicrons by intestinal epithelial cells.

    No full text
    <p>(A) CaCo-2 cells were incubated with 20 ”g/ml Alexa-red OVA for 1 h at 37°C. Nuclei were stained with DAPI (blue). (B) CaCo-2 cells on Transwell filters were incubated overnight at the apical side with 0.1 mg/ml OVA, washed from both sides, then incubated apically with 1.6 mM oleic acid (OA), butyric acid(BA), or oleic acid plus Pl-81 (2 ”l/ml). Basolateral medium was collected 16 h later, and OVA was detected by immunoblotting. OVA was immunoprecipitated from the basolateral medium with anti-OVA coupled to protein A-Sepharose (or protein A-Sepharose only), followed by Western blotting of unwashed precipitate for detection of Apo-B. As shown in (C), ApoB-48 co-precipitated with OVA.</p

    Chylomicron formation promotes intestinal absorption of full-length, antigenic OVA.

    No full text
    <p>Fasted mice were gavaged with 0.2 ml emulsions as described in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0008442#pone-0008442-g001" target="_blank">Figure 1</a>, except that <sup>125</sup>I-OVA was replaced with 25 mg OVA. Blood samples were obtained from the submandibular vein at indicated time points and analyzed for OVA by Western blotting.</p

    Chylomicron formation promotes systemic dissemination and antigen presentation of dietary antigen.

    No full text
    <p>Naïve BALB/C mice were injected with 2.5×10<sup>6</sup> CFSE labeled T cells from DO11.10 TCR transgenic mice. After 24 h, the mice were fasted (4 h) and gavaged with OVA (25 mg) in 0.2 ml PBS or 25 mg OVA in 0.05 ml PBS+0.15 ml of either MCT, LCT, or LCT plus Pl-81. Mice were then fasted for an additional 6 h. Three days later, inguinal LN cells were isolated, stained with anti-CD4 and KJ1-26 (TCR clonotypic antibody), and analyzed by flow cytometry. Histograms show representative CFSE dilution profiles of gated CD4+, KJ1-26+ T cells as a measure of cell division. The % of cells under markers M1 and M2 represent cells which have not or have undergone cell division respectively. Each panel represents a typical result of three experimental repeats.</p

    Life beyond 30: Probing the −20 < MUV < −17 Luminosity Function at 8 < z < 13 with the NIRCam Parallel Field of the MIRI Deep Survey

    No full text
    We present the ultraviolet luminosity function and an estimate of the cosmic star formation rate density at 8 8 galaxy candidates based on their dropout nature in the F115W and/or F150W filters, a high probability for their photometric redshifts, estimated with three different codes, being at z > 8, good fits based on χ 2 calculations, and predominant solutions compared to z < 8 alternatives. We find mild evolution in the luminosity function from z ∌ 13 to z ∌ 8, i.e., only a small increase in the average number density of ∌0.2 dex, while the faint-end slope and absolute magnitude of the knee remain approximately constant, with values α = − 2.2 ± 0.1, and M * = − 20.8 ± 0.2 mag. Comparing our results with the predictions of state-of-the-art galaxy evolution models, we find two main results: (1) a slower increase with time in the cosmic star formation rate density compared to a steeper rise predicted by models; (2) nearly a factor of 10 higher star formation activity concentrated in scales around 2 kpc in galaxies with stellar masses ∌108 M ⊙ during the first 350 Myr of the universe, z ∌ 12, with models matching better the luminosity density observational estimations ∌150 Myr later, by z ∌ 9.</p
    corecore