7,169 research outputs found

    Partial discharge detection and location for HVDC polymeric cables

    Get PDF
    This poster is concerned with use of partial discharge monitoring to provide information about the condition of the insulation of electrical cables used for HVDC transmission systems. Electrical cables are among the most fundamental components of any electrical grid, from large subsea international interconnectors, to the ‘last mile’ providing consumers with their electrical supply. The size, cost and current carrying capability are the main considerations when designing and selecting a cable, and in this regard the insulation of these cables is as fundamental as the conductor. Partial discharge (PD) measurement is becoming increasingly vital in monitoring the condition of cable insulation, providing valuable information about the health of the insulation, and predicting when insulation is likely to fail. The majority of this PD monitoring is performed on cable operating under AC conditions, however, with the increasing use of high voltage DC links, for subsea, or long land-based connections provides motivation for the increased use of PD monitoring on cables operating under HVDC. However, despite the increased intensity of research into PD in HVDC cables, there are significant knowledge gaps, preventing the practical application of PD monitoring techniques to HVDC cables. This poster describes the initial stages of a project to partially address these gaps in knowledge, by seeking to obtain results from PD measurements on cables of different insulation types under both AC and DC conditions. From this, recommendations on the use of PD monitoring for HVDC cables, with emphasis on insulation type, are will be provided, as well as recommendations for future research at both an academic and industrial level. The poster will detail the results of the initial literature review, as well as the design for the planned experimentation, and test rig

    The metIC operon involved in methionine biosynthesis in Bacillus subtilis is controlled by transcription antitermination

    Get PDF
    There are two major pathways for methionine biosynthesis in micro-organisms. Little is known about these pathways in Bacillus subtilis. The authors assigned a function to the metI (formerly yjcI) and metC (formerly yjcJ) genes of B. subtilis by complementing Escherichia coli metB and metC mutants, analysing the phenotype of B. subtilis metI and metC mutants, and carrying out enzyme activity assays. These genes encode polypeptides belonging to the cystathionine -synthase family of proteins. Interestingly, the MetI protein has both cystathionine -synthase and O-acetylhomoserine thiolyase activities, whereas the MetC protein is a cystathionine ß-lyase. In B. subtilis, the transsulfuration and the thiolation pathways are functional in vivo. Due to its dual activity, the MetI protein participates in both pathways. The metI and metC genes form an operon, the expression of which is subject to sulfur-dependent regulation. When the sulfur source is sulfate or cysteine the transcription of this operon is high. Conversely, when the sulfur source is methionine its transcription is low. An S-box sequence, which is located upstream of the metI gene, is involved in the regulation of the metIC operon. Northern blot experiments demonstrated the existence of two transcripts: a small transcript corresponding to the premature transcription termination at the terminator present in the S-box and a large one corresponding to transcription of the complete metIC operon. When methionine levels were limiting, the amount of the full-length transcript increased. These results substantiate a model of regulation by transcription antitermination.published_or_final_versio

    Assessment of cassava diversity in Uganda using SSR markers

    Get PDF

    On the linear fractional self-attracting diffusion

    Get PDF
    In this paper, we introduce the linear fractional self-attracting diffusion driven by a fractional Brownian motion with Hurst index 1/2<H<1, which is analogous to the linear self-attracting diffusion. For 1-dimensional process we study its convergence and the corresponding weighted local time. For 2-dimensional process, as a related problem, we show that the renormalized self-intersection local time exists in L^2 if 12<H<34\frac12<H<\frac3{4}.Comment: 14 Pages. To appear in Journal of Theoretical Probabilit

    Testing the paradox of enrichment along a land use gradient in a multitrophic aboveground and belowground community

    Get PDF
    In the light of ongoing land use changes, it is important to understand how multitrophic communities perform at different land use intensities. The paradox of enrichment predicts that fertilization leads to destabilization and extinction of predator-prey systems. We tested this prediction for a land use intensity gradient from natural to highly fertilized agricultural ecosystems. We included multiple aboveground and belowground trophic levels and land use-dependent searching efficiencies of insects. To overcome logistic constraints of field experiments, we used a successfully validated simulation model to investigate plant responses to removal of herbivores and their enemies. Consistent with our predictions, instability measured by herbivore-induced plant mortality increased with increasing land use intensity. Simultaneously, the balance between herbivores and natural enemies turned increasingly towards herbivore dominance and natural enemy failure. Under natural conditions, there were more frequently significant effects of belowground herbivores and their natural enemies on plant performance, whereas there were more aboveground effects in agroecosystems. This result was partly due to the “boom-bust” behavior of the shoot herbivore population. Plant responses to herbivore or natural enemy removal were much more abrupt than the imposed smooth land use intensity gradient. This may be due to the presence of multiple trophic levels aboveground and belowground. Our model suggests that destabilization and extinction are more likely to occur in agroecosystems than in natural communities, but the shape of the relationship is nonlinear under the influence of multiple trophic interactions.

    Expression of Foxp3 in colorectal cancer but not in Treg cells correlates with disease progression in patients with colorectal cancer

    Get PDF
    Background: Regulatory T cells (Treg) expressing the transcription factor forkhead-box protein P3 (Foxp3) have been identified to counteract anti-tumor immune responses during tumor progression. Besides, Foxp3 presentation by cancer cells itself may also allow them to evade from effector T-cell responses, resulting in a survival benefit of the tumor. For colorectal cancer (CRC) the clinical relevance of Foxp3 has not been evaluated in detail. Therefore the aim of this study was to study its impact in colorectal cancer (CRC). Methods and Findings: Gene and protein analysis of tumor tissues from patients with CRC was performed to quantify the expression of Foxp3 in tumor infiltrating Treg and colon cancer cells. The results were correlated with clinicopathological parameters and patients overall survival. Serial morphological analysis demonstrated Foxp3 to be expressed in cancer cells. High Foxp3 expression of the cancer cells was associated with poor prognosis compared to patients with low Foxp3 expression. In contrast, low and high Foxp3 level in tumor infiltrating Treg cells demonstrated no significant differences in overall patient survival. Conclusions: Our findings strongly suggest that Foxp3 expression mediated by cancer cells rather than by Treg cells contribute to disease progression

    An Analysis of Resting-State Functional Transcranial Doppler Recordings from Middle Cerebral Arteries

    Get PDF
    Functional transcrannial Doppler (fTCD) is used for monitoring the hemodynamics characteristics of major cerebral arteries. Its resting-state characteristics are known only when considering the maximal velocity corresponding to the highest Doppler shift (so called the envelope signals). Significantly more information about the resting-state fTCD can be gained when considering the raw cerebral blood flow velocity (CBFV) recordings. In this paper, we considered simultaneously acquired envelope and raw CBFV signals. Specifically, we collected bilateral CBFV recordings from left and right middle cerebral arteries using 20 healthy subjects (10 females). The data collection lasted for 15 minutes. The subjects were asked to remain awake, stay silent, and try to remain thought-free during the data collection. Time, frequency and time-frequency features were extracted from both the raw and the envelope CBFV signals. The effects of age, sex and body-mass index were examined on the extracted features. The results showed that the raw CBFV signals had a higher frequency content, and its temporal structures were almost uncorrelated. The information-theoretic features showed that the raw recordings from left and right middle cerebral arteries had higher content of mutual information than the envelope signals. Age and body-mass index did not have statistically significant effects on the extracted features. Sex-based differences were observed in all three domains and for both, the envelope signals and the raw CBFV signals. These findings indicate that the raw CBFV signals provide valuable information about the cerebral blood flow which can be utilized in further validation of fTCD as a clinical tool. © 2013 Sejdić et al

    Modelling of propagation characteristics of acoustic pulse from partial discharge in polymeric insulating materials

    Get PDF
    The partial discharge (PD) event in high-voltage insulation releases energy, exerts mechanical pressure, and generates elastic waves. Detecting and locating these PD events through short-duration acoustic pulses is well established, particularly in gas-insulated systems and oil-insulated transformers. However, its full potential remains untapped in solid insulation systems, where the propagation capability of the acoustic pulse and the acoustic reflections pose fundamental challenges to the acoustic emission (AE) detection technique. This study investigates the influence of reflections and multiple paths on the propagating acoustic pulse in polymeric insulating materials using a finite element method (FEM) in COMSOL. It was observed that the reflections from the boundary influence the propagating pulse’s shape, peak magnitude, and arrival time. An analytical MATLAB model further quantifies the impact of multiple propagation paths on the shape, magnitude, and arrival time of the pulse travelling in a cylinder. Additionally, a Perfect Matched Layer (PML) was implemented in the COMSOL model to eliminate the reflections from the boundary, and it revealed that the acoustic pulse magnitude decreases with distance following the inverse square law. In essence, the models aid in measuring how reflections contribute to the observed signals, facilitating the precise identification of the source of the PD event in the tested system
    corecore