3,210 research outputs found
OUTPUT CHANGE IN U.S. AGRICULTURE: AN INPUT-OUTPUT ANALYSIS
This paper analyzes output changes in the U.S. agricultural economy from 1972 to 1977 using a 477-sector input-output framework. The empirical model is based on benchmark input-output data from the U.S. Bureau of Economic analysis for 1972 and 1977. Output changes were decomposed into components attributable to technical change, domestic final demand change, export demand change and import substitution. A major advantage of the decomposition is its ability to identify the output change in a given sector due to general equilibrium effects in all sectors.Import substitution, Input-output, Output change, Technical change, Production Economics,
Combinatorial Alexander Duality -- a Short and Elementary Proof
Let X be a simplicial complex with the ground set V. Define its Alexander
dual as a simplicial complex X* = {A \subset V: V \setminus A \notin X}. The
combinatorial Alexander duality states that the i-th reduced homology group of
X is isomorphic to the (|V|-i-3)-th reduced cohomology group of X* (over a
given commutative ring R). We give a self-contained proof.Comment: 7 pages, 2 figure; v3: the sign function was simplifie
Pair Excitations and Vertex Corrections in Fermi Fluids
Based on an equations--of--motion approach for time--dependent pair
correlations in strongly interacting Fermi liquids, we have developed a theory
for describing the excitation spectrum of these systems. Compared to the known
``correlated'' random--phase approximation (CRPA), our approach has the
following properties: i) The CRPA is reproduced when pair fluctuations are
neglected. ii) The first two energy--weighted sumrules are fulfilled implying a
correct static structure. iii) No ad--hoc assumptions for the effective mass
are needed to reproduce the experimental dispersion of the roton in 3He. iv)
The density response function displays a novel form, arising from vertex
corrections in the proper polarisation. Our theory is presented here with
special emphasis on this latter point. We have also extended the approach to
the single particle self-energy and included pair fluctuations in the same way.
The theory provides a diagrammatic superset of the familiar GW approximation.
It aims at a consistent calculation of single particle excitations with an
accuracy that has previously only been achieved for impurities in Bose liquids.Comment: to be published in: JLTP (2007) Proc. Int. Symp. QFS2006, 1-6 Aug.
2006, Kyoto, Japa
Long Cycles in a Perturbed Mean Field Model of a Boson Gas
In this paper we give a precise mathematical formulation of the relation
between Bose condensation and long cycles and prove its validity for the
perturbed mean field model of a Bose gas. We decompose the total density
into the number density of
particles belonging to cycles of finite length () and to
infinitely long cycles () in the thermodynamic limit. For
this model we prove that when there is Bose condensation,
is different from zero and identical to the condensate density. This is
achieved through an application of the theory of large deviations. We discuss
the possible equivalence of with off-diagonal long
range order and winding paths that occur in the path integral representation of
the Bose gas.Comment: 10 page
The vector-valued big q-Jacobi transform
Big -Jacobi functions are eigenfunctions of a second order -difference
operator . We study as an unbounded self-adjoint operator on an
-space of functions on with a discrete measure. We describe
explicitly the spectral decomposition of using an integral transform
with two different big -Jacobi functions as a kernel, and we
construct the inverse of .Comment: 35 pages, corrected an error and typo
Entanglement Interpretation of Black Hole Entropy in String Theory
We show that the entropy resulting from the counting of microstates of non
extremal black holes using field theory duals of string theories can be
interpreted as arising from entanglement. The conditions for making such an
interpretation consistent are discussed. First, we interpret the entropy (and
thermodynamics) of spacetimes with non degenerate, bifurcating Killing horizons
as arising from entanglement. We use a path integral method to define the
Hartle-Hawking vacuum state in such spacetimes and discuss explicitly its
entangled nature and its relation to the geometry. If string theory on such
spacetimes has a field theory dual, then, in the low-energy, weak coupling
limit, the field theory state that is dual to the Hartle-Hawking state is a
thermofield double state. This allows the comparison of the entanglement
entropy with the entropy of the field theory dual, and thus, with the
Bekenstein-Hawking entropy of the black hole. As an example, we discuss in
detail the case of the five dimensional anti-de Sitter, black hole spacetime
Non-perturbative effects and the resummed Higgs transverse momentum distribution at the LHC
We investigate the form of the non-perturbative parameterization in both the
impact parameter (b) space and transverse momentum (p_T) space resummation
formalisms for the transverse momentum distribution of single massive bosons
produced at hadron colliders. We propose to analyse data on Upsilon
hadroproduction as a means of studying the non-perturbative contribution in
processes with two gluons in the initial state. We also discuss the theoretical
errors on the resummed Higgs transverse momentum distribution at the LHC
arising from the non-perturbative contribution.Comment: 22 pages, 10 figure
Tissue engineering for total meniscal substitution : Animal study in sheep model
Objective: The aim of the study was to investigate the use of a novel hyaluronic acid/polycaprolactone material for meniscal tissue engineering and to evaluate the tissue regeneration after the augmentation of the implant with expanded autologous chondrocytes. Two different surgical implantation techniques in a sheep model were evaluated. Methods: Twenty-four skeletally mature sheep were treated with total medial meniscus replacements, while two meniscectomies served as empty controls. The animals were divided into two groups: cell-free scaffold and scaffold seeded with autologous chondrocytes. Two different surgical techniques were compared: in 12 animals, the implant was sutured to the capsule and to the meniscal ligament; in the other 12 animals, also a transtibial fixation of the horns was used. The animals were euthanized after 4 months. The specimens were assessed by gross inspection and histology. Results: All implants showed excellent capsular ingrowth at the periphery. Macroscopically, no difference was observed between cell-seeded and cell-free groups. Better implant appearance and integrity was observed in the group without transosseous horns fixation. Using the latter implantation technique, lower joint degeneration was observed in the cell-seeded group with respect to cell-free implants. The histological analysis indicated cellular infiltration and vascularization throughout the implanted constructs. Cartilaginous tissue formation was significantly more frequent in the cell-seeded constructs. Conclusion: The current study supports the potential of a novel HYAFF/polycaprolactone scaffold for total meniscal substitution. Seeding of the scaffolds with autologous chondrocytes provides some benefit in the extent of fibrocartilaginous tissue repair
Modification of the ground state in Sm-Sr manganites by oxygen isotope substitution
The effect of O O isotope substitution on electrical
resistivity and magnetic susceptibility of SmSrMnO manganites
is analyzed. It is shown that the oxygen isotope substitution drastically
affects the phase diagram at the crossover region between the ferromagnetic
metal state and that of antiferromagnetic insulator (0.4 0.6), and
induces the metal-insulator transition at for = 0.475 and 0.5. The nature
of antiferromagnetic insulator phase is discussed.Comment: 4 pages, 3 eps figures, RevTeX, submitted to Phys. Rev. Let
- …
