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a b s t r a c t 

A multilevel Monte Carlo (MLMC) method for quantifying model-form uncertainties associated with the 

Reynolds-Averaged Navier-Stokes (RANS) simulations is presented. Two, high-dimensional, stochastic ex- 

tensions of the RANS equations are considered to demonstrate the applicability of the MLMC method. 

The first approach is based on global perturbation of the baseline eddy viscosity field using a lognormal 

random field. A more general second extension is considered based on the work of [Xiao et al. (2017)], 

where the entire Reynolds Stress Tensor (RST) is perturbed while maintaining realizability. For two fun- 

damental flows, we show that the MLMC method based on a hierarchy of meshes is asymptotically faster 

than plain Monte Carlo. Additionally, we demonstrate that for some flows an optimal multilevel estimator 

can be obtained for which the cost scales with the same order as a single CFD solve on the finest grid 

level. 

© 2019 Published by Elsevier Ltd. 
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. Introduction 

The Reynolds-Averaged Navier-Stokes (RANS) equations com- 

ined with turbulence closure models are widely utilized in engi-

eering to predict flows with high Reynolds number. These turbu-

ence closure models are used to obtain an approximate Reynolds

tress tensor that is responsible for coupling the mean flow with

urbulence. Although many turbulence models exist in the litera-

ure, there is no single model that generalizes well to all classes of

urbulent flows [1,2] . Specifically, the performance depends on the

odeling assumptions and the type of flow used to calibrate the

o-called closure coefficients that are needed as inputs to a turbu-

ence model. 

Since the dominant source of error in the flow prediction comes

rom the turbulence modeling, a number of approaches have al-

eady been developed for the model-form uncertainty quantifica-

ion (UQ) of RANS simulations, see e.g. [3,4] for recent reviews.

he majority of these approaches are based on the perturbation of

aseline RANS models. One way to achieve this is by injecting un-

ertainties in the closure coefficients [5–8] of turbulence models.

nother more general physics-based approaches exists, which typ-

cally introduces randomness directly into the modeled Reynolds
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tress Tensor (RST), either by perturbing its eigenvalues [9–11] ,

ensor invariants [12,13] or the entire RST field [14] . One can also

lassify these stochastic models in terms of global and local per-

urbation (in space). For global approaches, such as in [5–7,10] , the

agnitude of perturbations in closure coefficients, eigenvalues of

ST, etc. is the same throughout the flow domain. This translates

o a low-dimensional UQ problem which can be efficiently han-

led by deterministic sampling techniques like stochastic colloca-

ion [15,16] or just by simulating flows for limiting states to obtain

 prediction interval. Since the error in closure models is not same

verywhere, global methods fail to capture the truth in general. On

he other hand, local perturbation approaches may be effective due

o high-dimensional parameterizations of uncertainties. Some local

ethods already exist, such as the spatially varying marker func-

ions proposed in [9,17] or Gaussian random fields [13,14,18] as a

easure of local variation of the uncertainty. The main bottleneck

ampering the development of these local models is the large cost

f a forward uncertainty propagation stage. 

The prime objective of this work is to provide a framework

or developing a new class of high-dimensional stochastic RANS

losures, that were until recently not viable (due to the cost of

he propagation), but will be if the work required is within a

onstant, small factor of the cost of the fine-grid solution proce-

ure. We achieve this using the multilevel Monte Carlo (MLMC)

ethod [19,20] . In previous works, the potential of the MLMC

ethod has already been demonstrated in context of the invis-

id compressible flow in [21] for propagating lower-dimensional
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http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2019.104420&domain=pdf
mailto:pkumar@cwi.nl
mailto:m.schmelzer@tudelft.nl
mailto:r.p.dwight@tudelft.nl
https://doi.org/10.1016/j.compfluid.2019.104420


2 P. Kumar, M. Schmelzer and R.P. Dwight / Computers and Fluids 201 (2020) 104420 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c  

t  

S  

a  

2

 

s  

d  

o  

fl  

s  

a

u  

u  

r  

t  

S  

a

ρ  

T  

t  

H  

g  

m  

ρ  

k  

b  

e  

s  

c  

m  

c  

s  

O  

t  

b  

t  

e  

s  

r

−  

w  

n  

t  

l  

t  

b  

d  

t  

k  

b

 

geometric and operational uncertainties. In the current work, we

use two local stochastic models based on a random eddy viscos-

ity and a random Reynolds stress tensor. The random eddy vis-

cosity is obtained by perturbing the baseline eddy viscosity using

Gaussian random fields with some prescribed spatial covariance.

This stochastic model is applicable for the quantification of uncer-

tainties arising due to imperfect closure constants. Similarly, the

random RST is derived by perturbing the baseline RST. We utilize

the algorithm proposed in [14] where the random RST is modeled

by means of spatially correlated positive-definite random matrices.

This approach is attractive as the random matrix is drawn from

a set of positive-definite matrices which automatically guarantees

realizable Reynolds stresses. Since, the two stochastic extensions

considered are high-dimensional in their random inputs, Monte

Carlo (MC) type methods are favorable owing to their dimension-

independent convergence. For many UQ problems in fluid dynam-

ics, the computational time and resources required to perform

plain MC simulation are prohibitive. Standard MC methods may re-

quire thousands of CFD simulations on a fine computational mesh,

before the statistical moments of the QoIs converge to some pre-

scribed tolerance. The cost of the forward propagation can be dras-

tically reduced by using the multilevel Monte Carlo method. When

estimating the moments by using the MLMC method, samples on

a hierarchy of grids are taken in a telescopic decomposition of

the expectation. For many problems, the variance in the flow due

to random inputs can largely be captured by samples on a very

coarse mesh with relatively small computational effort. This coarse

estimation can be further refined by adding corrections based on

samples from finer meshes. These corrections although computed

on finer meshes are small in magnitude, thus only a few simula-

tions are required to gauge the additional details offered by these

finer grid levels. While offering large computational speed-up over

single level MC, MLMC retains all useful properties of the MC

methods like high parallelization potential and integration with the

complementary variance reduction techniques. There are other hy-

brid MLMC estimators, for instance, the Multi-index Monte Carlo

estimator [22] that can be highly effective for anisotropic meshes.

Other multilevel stochastic collocation based estimators have also

been proposed, where random sampling at each mesh level is re-

placed by sparse grids [23,24] . 

We propose a standard MLMC method for efficient forward

propagation of the uncertainty which is based on a hierarchy of

pre-defined grids. For the proposed MLMC estimator, we show that

the asymptotic cost does not deteriorate with an increase in the

uncertain dimension and is controlled by the mesh convergence

properties that further depend on the quality of the mesh and

the discretization scheme used. For problems with sufficiently fast

decay of the numerical error, we demonstrate a cost scaling of

O(ε −2 ) to achieve an error tolerance of ε. On the other hand, for

problems with a slower error decay rate, we can attain an optimal

MLMC estimator, in the sense that the cost grows at the same rate

as the deterministic counterpart of the problem. 

The other motivation of this work is to show that the consid-

ered stochastic models can serve as an accurate Bayesian prior for

calibration and data-assimilation involving turbulence models. Us-

ing numerical experiments, we show that the two models are suf-

ficiently general and can reliably bound the possible flow behavior.

Furthermore, the probability distribution of the random Reynolds

stresses also satisfies the maximum entropy principle, a desirable

property for a good prior. 

The paper is organized as follows. In Section 2 we briefly in-

troduce the deterministic RANS equations and two standard de-

terministic turbulence models. Stochastic RANS models based on

the random eddy viscosity and the random Reynolds stress are dis-

cussed in Section 3 . A general description of the MLMC method is

provided in Section 4 along with implementation details that in-
lude the construction of appropriate MLMC levels and the quan-

ification of numerical and statistical errors in these estimators. In

ection 5 , numerical experiments are reported based on flow over

 periodic hill and fully developed turbulent flow in a square duct.

. Deterministic RANS models 

Direct numerical simulation of turbulent flow is highly expen-

ive due to a large range of scales. Most engineering applications

o not require details of these fine spatio-temporal features but

nly the effect of turbulence on the mean flow. A system of mean

ow equations can be derived by Reynolds averaging, which con-

ists of decomposing the flow into mean components, defined as

n average over a large time period T , and fluctuations, 

 i := lim 

T →∞ 

1 

T 

∫ T 

0 

u i d t, (1)

 

′ 
i := u i − u i , (2)

espectively. The quantities u i and u ′ 
i 

are the mean and the fluc-

uating components of the instantaneous velocity u i , respectively.

ubstituting (2) into the incompressible Navier-Stokes equation

nd averaging, results in the mean flow equation, 

( u · ∇) u i = − ∂ p 

∂x i 
+ 

∂ 

∂x j 

(
R i j + R i j 

)
, i, j = 1 , 2 , 3 . (3)

he mean velocity vector is represented by u = ( u 1 , u 2 , u 3 ) , p is

he time-averaged pressure field and ρ is the (constant) density.

ere R i j = 

1 
2 ρν(∂ u i /∂ x j + ∂ u j /∂ x i ) denotes the mean stresses (tan-

ential and normal) associated with the molecular viscosity ν . The

ean flow is coupled to the turbulence by Reynolds stresses R i j =
u ′ 

i 
u ′ 

j 
. The Reynolds stress components R ij appearing in (3) are un-

nown and are modeled using turbulence closure models that can

e broadly categorized into Reynolds stress transport models and

ddy viscosity models. The former models rely on an approximate

et of stress transport equations to compute the Reynolds stress

omponents. Although physically more stringent, stress transport

odels are not very popular in engineering practice as the dis-

retizations of these coupled set of stress transport equations re-

ult in a numerically stiff system that is more expensive to solve.

n the other hand, linear eddy viscosity models are popular as

hey are significantly cheaper and perform reasonably well for a

road range of flows [1] . However, they are challenged by indus-

rially relevant flows exhibiting separation, impinging, curvature,

tc. These models are based on the Boussinesq approximation which

tates that the Reynolds stresses are linearly related to the mean

ate-of-strain as 

u 

′ 
i 
u 

′ 
j 
≈ νt 

(
∂ u i 

∂x j 
+ 

∂ u j 

∂x i 

)
− 2 

3 

δi j k, (4)

here k := 

1 
2 u 

′ 
i 
u ′ 

i 
is the turbulent kinetic energy, δij is the Kro-

ecker delta and νt is the eddy viscosity. On dimensional grounds

he eddy-viscosity is a function of the turbulent velocity and

ength scale [25] . These quantities are commonly computed using

wo-equation turbulence models, such as k − ε or k − ω, that are

ased on transport equations for k and for the turbulence-energy

issipation ε or the specific-dissipation ω. In this article, we use

wo popular turbulence models, the Launder-Sharma k − ε and a

 − ω model. For both models, a generic k transport equation can

e formulated with appropriate terms, listed in Table 1 , as 

∂k 

∂t 
+ 

∂ 

∂x j 

[
k u j −

(
ν + 

νt 

σk 

)
∂k 

∂x j 

]
= P − D, and P = R i j 

∂ u i 

∂x j 
. 

(5)
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Table 1 

Terms and coefficients in the k transport 

equation for two turbulence models. 

Term Launder-Sharma k − ε k − ω

D ε + 2 ν

(
∂ 
√ 

k 

∂x j 

)2 

C μωk 

ν t C μ f μ
k 2 

ε

k 

ω 

σ k 1 2 

C μ 0.09 0.09 
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The Launder-Sharma k − ε model is typically employed as a

ow-Reynolds number model. These kind of models resolve the

iscous part of the boundary layer with an appropriately refined

esh instead of utilizing wall functions [26] . Correct near wall be-

aviour is achieved by damping functions for the eddy viscosity f μ
nd the dissipation f 2 close to a wall. The equation for the dissipa-

ion ε reads 

∂ε

∂t 
+ 

∂ 

∂x j 

[
εu j −

(
ν + 

νt 

σε

)
∂ε

∂x j 

]
= ( C ε1 

P − C ε2 
f 2 ε) 

ε

k 

+ 2 ννt 

(
∂ 2 u i 

∂x 2 
j 

)2 

, with (6) 

f μ = exp 

[ 

−3 . 4 (
1 + 

k 2 

50 νε

)2 

] 

, f 2 = 1 − 0 . 3 exp 

[ 

− min 

( (
k 2 

νε

)2 

, 50 

) ] 

, (7)

ith σε = 1 . 3 , C ε1 
= 1 . 44 , C ε2 

= 1 . 92 . The other model is the k − ω
odel [27] , which uses a specific dissipation ω, 

∂ω 

∂t 
+ 

∂ 

∂x j 

[
ω u j −

(
ν + 

νt 

σω 

)
∂ε

∂x j 

]
= γ

ω 

k 
P − βω 

2 , (8) 

ith σω = 2 , γ = 0 . 52 and β = 0 . 072 . 

These two models are our baseline, to be perturbed in order to

btain stochastic RANS equations. But the method proposed in this

rticle is also applicable to other eddy viscosity models. 

. Stochastic RANS models 

We now describe in detail the two stochastic models based on

 perturbation of the baseline eddy viscosity field and the baseline

eynolds stress tensor field [14] originating from a deterministic

ddy viscosity model. The former model is mathematically simple

nd is suitable for quantifying uncertainties that are introduced

rom a poor choice of RANS closure parameters to compute the

ddy viscosity. The latter model is more advanced and is applica-

le to flows where the assumption of linear stress-strain relation

s insufficient. When these models are combined with the RANS

q. (3) , we obtain so-called stochastic partial differential equations

SPDEs) that are solved using the MLMC method. 

Before we describe the stochastic models, we clarify our setting.

he RANS equations are defined in a bounded domain D ⊂ R 

d (d =
 , 2 , 3) . The complete probability space is denoted by (�, F , P ) ,

here � is the sample space with σ -field F and probability mea-

ure P . Furthermore, the zero-mean Gaussian random field will be

enoted by Z ( x , ω), x ∈ D, ω ∈ � with a specified positive-definite

ovariance kernel. Therefore, 

 [ Z(x , ·)] = 0 , (9)

ov (Z( x 1 , ·) , Z( x 2 , ·)) = E [ Z( x 1 , ·) Z( x 2 , ·)] , x 1 , x 2 ∈ D. (10)

e will work with a stationary anisotropic squared exponential co-

ariance model, given by 
ov (Z( x 1 , ·) , Z( x 2 , ·)) = C( x 1 , x 2 ) : 

= σ 2 
c exp 

(
− (x 1 − x 2 ) 

2 

l 2 x 

− (y 1 − y 2 ) 
2 

l 2 y 

− (z 1 − z 2 ) 
2 

l 2 z 

)
, (11) 

here C : R 

d → R + with parameters σ 2 
c the marginal variance; l x ,

 y and l z correlation lengths along the x, y and z directions, respec-

ively. The realization of Z can be based on the Karhunen-Loéve

KL) decomposition of Z ( x , ω) 

(x , ω) = 

∞ ∑ 

j=1 

√ 

λ j � j (x ) ξ j , ξ j ∼ N (0 , 1) . (12)

ere, λj and � j are eigenvalues and eigenfunctions of the covari-

nce kernel C ( x 1 , x 2 ), obtained from the solution of the Fredholm

ntegral, 
 

D 
C( x 1 , x 2 )�( x 1 ) d x 1 = λ�( x 2 ) . (13)

he sum in (12) represents an infinite dimensional uncertain field

ith diminishing contributions of the eigenmodes. The sum is

runcated after a finite number of terms, M KL , which is usually de-

ided by balancing the KL-truncation error with other sources of

rror, such as discretization or sampling errors. For Gaussian pro-

esses with small correlation lengths and large variances, typically

 large number of terms is needed to include all important eigen-

odes [28] . The evaluation of eigenmodes in the KL expansion is

xpensive as it requires solving the integral Eq. (13) for each mode.

n case of stationary covariance models, fast sampling of random

elds can be achieved via a spectral generator (sometimes referred

o as circulant embedding) which employs the discrete FFT (Fast

ourier Transform) [29–31] . A short summary of this technique is

rovided in Appendix A2. 

.1. Random eddy viscosity (REV) model 

RANS turbulence models rely on transport equations and a set

f closure coefficients that are obtained from a calibration against

NS or experimental data. For a given turbulence model, a closure

oefficient take different values when calibrated against different

ypes of flow [1] . Since the model prediction is strongly influenced

y the value of the closure coefficients, a common practice is to

ropagate a joint probability distribution of these closure parame-

ers to obtain uncertainty bounds of the QoIs, see e.g, [5,6,8] . These

pproaches indirectly lead to a globally perturbed eddy viscosity

eld. Here, one must take into account the fact that the Boussinesq

ssumption (4) is in the general case only locally imperfect. There-

ore, methods that allow direct local perturbations of the baseline

ddy viscosity fields can be effective. A convenient way to achieve

his local perturbation is by the means of Gaussian random fields

ith some prescribed covariance model. Depending on the prob-

em, a covariance model can be designed which induces a high-

ariability locally in νt ; around regions where eddy viscosity mod-

ls are expected to perform poorly. The samples of the random

ddy viscosity field νt ( x , ω) can be obtained by perturbing the

aseline eddy viscosity field which we now denote by ν(bl) 
t (x ) with

he Gaussian random field, 

og νt (x , ω) = log ν(bl) 
t (x ) + Z(x , ω) , (14)

here ω denotes the random event in the stochastic domain �.

he mean field ν(bl) 
t is obtained from a converged deterministic

ANS simulation and is based on a baseline turbulence model, or

rom an average of eddy viscosities obtained from different tur-

ulent models. The above relation is the simplest multiplicative

odel, νt (x , ω) = ν(bl) 
t (x ) e Z(x ,ω) , that is able to impose positivity

f random eddy viscosity samples and values close to zero near

he wall region. We point out that Dow and Wang [18,32] also ex-

lored Gaussian random fields to obtain uncertainty bounds in the
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mean flow. In their approach the variability of the Gaussian pro-

cess was based on the discrepancy between eddy viscosities ob-

tained from the DNS data (known as the “true” eddy viscosity) and

those predicted by any turbulence model. 

With the random eddy viscosity, we obtain the following SPDE:

ρ( u · ∇) u i = −∂ p ∗

∂x i 
+ 

∂ 

∂x j 

[
( ν + νt (ω) ) 

(
∂ u i 

∂x j 
+ 

∂ u j 

∂x i 

)]
, (15)

where p ∗ := p − 2 
3 k . Recall that the above SPDE can be used for

quantifying uncertainties due to inconsistencies in the closure pa-

rameters of the baseline model and also provide a way to account

for the effect of local variations of these parameters in the flow un-

like [5,6,8] . However, this stochastic model still inherits drawbacks

from the Boussinesq hypothesis and is inadequate for quantifying

uncertainties associated with turbulence anisotropy. For instance,

occurrence of secondary flows as a result of normal stress imbal-

ance (e.g. in a square duct) will remain undetected. Therefore, a

more generic stochastic model is also discussed, that involves in-

jection of uncertainties directly into the baseline Reynolds stress

tensor. 

3.2. Random Reynolds Stress Tensor (RRST) model 

The RRST model stems from the work by Soize in [33–36] who

developed non-parametric probabilistic approaches based on ran-

dom matrix theory to quantify modeling uncertainties in compu-

tational mechanics problems. Soize derived the maximum entropy

probability distribution for symmetric positive-definite (SPD) real

matrices with a given mean and variance (also known as the dis-

persion parameter, δ) along with a Monte Carlo sampling method.

These results with slight modifications can be utilized for the

sampling of random Reynolds stress tensors (as physically realiz-

able RSTs are symmetric positive semi-definite matrices). Xiao and

coworkers in [14] further extended this approach to incorporate

spatial correlation in the Reynolds stress components by the means

of Gaussian random fields with a prescribed covariance function.

We now briefly outline sampling algorithms for a random SPD ma-

trix that will be utilized later to describe the sampling of the ran-

dom Reynolds stress tensor fields. We closely follow the descrip-

tion from the original papers [14,36,37] . 

3.2.1. Sampling random SPD matrices 

We denote by M 

+0 
d 

(R ) and M 

+ 
d 
(R ) the set of all d × d sym-

metric positive semi-definite and symmetric positive-definite ma-

trices with real entries, respectively. Given a baseline matrix R (bl) ∈
M 

+ 
d 
(R ) , we wish to sample random matrices R ∈ M 

+ 
d 
(R ) , such that

E [ R ] = R (bl) . The sampling of R can be achieved using a normal-

ized random SPD matrix G ∈ M 

+ 
d 
(R ) with mean I d (identity), i.e.

E [ G ] = I d and the variance parameterized with a dispersion param-

eter δ > 0 defined as 

δ = 

√ 

1 

d 
E 

[|| G − I d || 2 F 

]
, (16)

where || · || F is the Frobenius norm. A first step is to utilize the

Cholesky decomposition G = U 

T U , where U is an upper-triangular

matrix with positive diagonal entries. Now, the assembly of the

random matrix G boils down to sampling the six entries of U . The

non-diagonal entries of U are sampled by means of 

 i j = 

δ√ 

d + 1 

ξi j , for i > j, ξi j ∼ N (0 , 1) . (17)

The diagonal entries are sampled as 

 ii = 

δ√ 

d + 1 

√ 

2 y i , for i = 1 , 2 , 3 , (18)
here y i > 0 is a sample from the gamma distribution �( k i , 1) with

hape parameter k i and scaling parameter 1, i.e. 

 i ∼ �(k i , 1) with k i = 

d + 1 

2 δ2 
+ 

1 − i 

2 

. (19)

he gamma probability density function f Y is given by: 

f Y (y i ) = 

y k i −1 
i 

exp (−y i ) 

�(k i ) 
with k i = 

d + 1 

2 δ2 
+ 

1 − i 

2 

, (20)

here �( ·) is the standard gamma function. For different diagonal

erms, y i ( x , · ) will have different mar ginal PDFs depending on the

hape parameter k i . Using G , one can obtain the random matrix R

ith mean R ( bl ) as: 

 = U 

T 
(bl) GU (bl) , (21)

here U ( bl ) is an upper-triangular matrix with positive diagonal

ntries obtained via the Cholesky factorization of the baseline RST

 (bl) = U 

T 
(bl) 

U (bl) . Assuming R ( bl ) to be positive-definite, the factor-

zation yields a unique matrix U ( bl ) . Note that in practice R ( bl ) is

ymmetric positive semi-definite, belonging to M 

+0 
d 

(R ) . The RSTs

ith zero eigenvalues i.e. R (bl) ∈ M 

+0 
d 

(R ) \ M 

+ 
d 
(R ) are only encoun-

ered when det (R (bl) ) = 0 , corresponding to the 2-component tur-

ulence limit [1] . However, adding an arbitrarily small number

o the diagonal will make this tensor symmetric positive-definite.

e also point out that, to maintain positive-definiteness of G ,

he dispersion parameter δ should be chosen such that 0 < δ <
 

(d + 1)(d + 5) −1 , see [35] for details. Thus, for d = 3 , we find the

onstraint 0 < δ < 1 / 
√ 

2 . 

.2.2. Sampling the random tensor field 

The sampling algorithm for SPD matrices can be extended to

ample spatially correlated tensor fields. We follow a similar pro-

edure as described in the preceding section but now the entries

f the upper-triangular matrix U are correlated in space. We de-

cribe the necessary algorithmic modifications needed to sample

hese random RST fields. 

Let the random RST at any point be denoted by R (x , ω) = R ,

he deterministic baseline Reynolds stress tensor field by R (bl) (x ) =
 (bl) and a spatially varying dispersion field by δ( x ). Furthermore,

he entries of the random upper-triangular matrix, U (x , ω) = U ,

re spatially correlated as: 

ov { U i j ( x 1 , ·) , U i j ( x 2 , ·) } = C( x 1 , x 2 ) , i > j, (22)

ov { U 

2 
ii ( x 1 , ·) , U 

2 
ii ( x 2 , ·) } = C( x 1 , x 2 ) , i = j. (23)

s suggested in [14] , we also consider a squared-exponential co-

ariance function for both off-diagonal and for the square of the

iagonal terms. Other covariance models, for instance, a periodic

r an exponential covariance can also be utilized. For the sake of

implicity, we use C ( x 1 , x 2 ) defined in (11) but with σ 2 
c = 1 . Now,

he random tensor field R is assembled using six independent ran-

om fields: U 11 ( x , ω), U 12 ( x , ω), U 13 ( x , ω), U 22 ( x , ω), U 23 ( x , ω) and

 33 ( x , ω). The off-diagonal fields are computed as: 

 i j (x , ω) = 

δ(x ) √ 

d + 1 

Z i j (x , ω) , for i > j, Z i j ∼ N (0 , C) . (24)

he Gaussian random fields Z ij are generated in a similar fashion,

s described in (12) . Similar to (18) , the diagonal elements are ob-

ained as: 

 ii (x , ω) = 

δ(x ) √ 

d + 1 

√ 

2 y i (x , ω) , for i = 1 , 2 , 3 , (25)

here y i ( x , ω) > 0 denotes a random field with gamma marginal

istribution �( k ( x ), 1) and covariance defined in (23) . Now, the
i 
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e∣∣

T

|  
arginal gamma PDF in (20) is modified to incorporate spatial de-

endence by δ( x ) as 

f Y ( y i (x , ·)) = 

y i (x , ·) (k i (x ) −1) exp (−y i (x , ·)) 
�(k i (x )) 

, with 

k i (x ) = 

(d + 1) 

2 δ(x ) 2 
+ 

(1 − i ) 

2 

. (26) 

s the sampling of a non-Gaussian fields using a KL expansion

s involved, the authors of [38] proposed a generalised Polyno-

ial Chaos (gPC) expansion approach which approximates a non-

aussian field in terms of a weighted combination of Hermite or-

hogonal polynomials of a standard Gaussian field, 

 ≈
N PC ∑ 

n =1 

w n H n (Z) , (27) 

here Y represents a spatially correlated gamma random field, N PC 

s the order of the expansion and H n (Z) is the Hermite polynomial

n Z of order n with weight w n . Given the orthogonality of Hermite

olynomials with respect to the Gaussian measure, we can evalu-

te the weights as: 

 n = 

E [ Y H n (Z)] 

E [ H n (Z) 2 ] 
. (28) 

ere the expectation in the denominator has an analytic expres-

ion but the expectation in the numerator is not well-defined as

he dependence between Y and Z is unknown. Since the distribu-

ion of Y is available, one can exploit the fact that Y = F −1 
Y 

(F Z (Z))

nd reformulate the numerator in (28) as 

 [ Y H n (Z)] = 

∫ ∞ 

−∞ 

F −1 
Y [ F Z (z)] H n (z) d F Z (z) , (29)

here F Y (y ) = P rob (Y ≤ y ) is the cumulative distribution for a

amma random variable Y and F −1 
Y 

represents its inverse. Simi-

arly, F Z (z) = P rob (Z ≤ z) is the cumulative distribution for a stan-

ard Gaussian random variable Z . Now, the integral (29) can be nu-

erically computed using any conventional integration technique.

ith the above weights, the gPC expansion in (27) converges to

 in weak sense (convergence in probability distribution) [39,40] .

ote that F Y should be appropriately modified according to (26) to

ncorporate the spatial dependence in the marginal gamma PDF. It

s also pointed out that for a spatially varying dispersion δ( x ) the

eights will differ at different spatial locations. 

A few remarks are in order. The mean RST field R ( bl ) can be di-

ectly obtained from the baseline RANS simulation. Also, the value

f the dispersion field can be based on expert knowledge and can

e set to a large value at locations with high uncertainty. How-

ver, to obtain a positive-definite Reynolds stress tensor at each

oint the dispersion should again be chosen such that 0 < δ(x ) <
 

(d + 1)(d + 5) −1 . 

Using the random Reynolds stress tensor, we can define the

tochastic mean flow equation, as follows: 

( u · ∇) u i = − ∂ p 

∂x i 
+ 

∂ 

∂x j 

(
R i j + R i j (ω) 

)
, (30)

here R i j represents mean stress, as defined for the PDE (3) and

 ij ( ω) represents components of the random tensor field R . In this

tochastic model the isotropic eddy viscosity (Boussinesq) assump-

ion is clearly avoided. Furthermore, this model allows us to ac-

ommodate different covariance structures for different Reynolds

tress components, and thus can represent strongly anisotropic tur-

ulence. We would like to emphasize that the above SPDE is more

eneral than in (15) as the above formulation allows us to incorpo-

ate at most six random fields for each Reynolds stress component

nd may result in an extremely high-dimensional UQ problem. 
. The multilevel Monte Carlo method 

In this section, we will provide a general description of the

ingle- and multi-level variants of the Monte Carlo method that

ill be used to solve the SPDEs (15) and (30) . 

We assume that the QoIs considered belong to the functional

pace L 2 (�, D) , the space of square-integrable measurable func-

ions u : � → L 2 (D) for the previously defined probability space

(�, F , P ) . These spaces are equipped with the norm 

 | u (x , ω) | | L 2 (�, D) := E 

[| | u (x , ω) | | 2 L 2 (D) 

] 1 
2 = 

(∫ 
�

| | u (x , ω) | | 2 L 2 (D) d P 

) 1 
2 
. 

(31) 

he above L 2 − based norm will be used for error analysis of the

onte Carlo estimators in the following. 

.1. MC estimator 

We will consider the streamwise velocity field u as the QoI for

escribing the MC estimator. The standard MC estimator for E [ u h ]

s obtained by averaging N independent, identically distributed

i.i.d.) samples of the velocity field { u h (ω i ) } N i =1 
on the computa-

ional grid D h as 

 [ u h ] ≈ E 

MC 
N [ u h ] := 

1 

N 

N ∑ 

i =1 

u h (ω i ) , (32)

here ω i denotes an event in the stochastic domain � and h is

he largest cell-width in the simulation grid D h . The above estima-

or is easy to implement. On a given spatial mesh D h , we generate

amples of random input and accordingly modify the mean flow

q. (3) . Then, for each sample, the modified mean flow equation is

olved to obtain samples of the QoIs. These samples are averaged

o obtain the MC estimate E 

MC 
N 

[ u h ] . Similarly, the unbiased estima-

or for the variance is defined 

 

MC 
N [ u h ] := 

1 

N − 1 

N ∑ 

i =1 

(
u h (ω i ) − E 

MC 
N [ u h ] 

)2 
. (33)

.1.1. Accuracy of the MC estimator 

Although the standard MC method has been widely used for

ncertainty propagation in the context of CFD modeling, a measure

f the accuracy for the resulting estimates is rarely reported. Next

e derive the error estimates related to the estimator E 

MC 
N 

[ u h ] . For

ny deterministic RANS closure model, the errors can be broadly

f three types: parameter uncertainty, uncertainties due to the

orm of the model, and discretization error. Obtaining a quantita-

ive measure of the model uncertainties is only possible when a

igh-fidelity solution (DNS or LES) is available. Discretization error

n the other hand, is comparatively easy to quantify for a given

omputational mesh, as a good reference solution can be obtained

y solving the same set of PDEs on a relatively finer mesh. Addi-

ionally, for the stochastic RANS models, quantification of the sam-

ling error becomes vital. We will focus on these two errors in our

nalysis. 

Using the triangle inequality, the MSE (mean square error) in

 

MC 
N 

[ u h ] can be bounded by the sum of discretization and sampling

rrors, as ∣∣E [ u ] − E 

MC 
N [ u h ] 

∣∣∣∣2 

L 2 (�, D) 
≤ | | E [ u ] − E [ u h ] | | 2 L 2 (D) 

+ 

∣∣∣∣E [ u h ] − E 

MC 
N [ u h ] 

∣∣∣∣2 

L 2 (�, D) 
. (34) 

he discretization error can be estimated as: 

 | E [ u ] − E [ u h ] | | L 2 (D) ≤ C 1 h 

α, α > 0 , (35)



6 P. Kumar, M. Schmelzer and R.P. Dwight / Computers and Fluids 201 (2020) 104420 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I  

E  

m  

m  

V  

a  

u

E  

=  

w  

M  

i  

t  

r  

�  

e  

t  

s  

w  

c  

D  

a  

fi  

n  

t  

e  

o  

fi

 

i  

o

V  

w

V

 

w  

l  

p  

p  

s

V  

w  

p  

i  

c  

m

4

 

t

E  
where C 1 is a constant. As the exact solution E [ u ] is not available,

a relative error measure of the form || E [ u h ] − E [ u 2 h ] || L 2 (D) can be

used to bound the exact discretization error, as 

| | E [ u ] − E [ u h ] | | L 2 (D) ≤
| | E [ u h − u 2 h ] | | L 2 (D) 

2 

α − 1 

. (36)

The above relation can be easily derived using the reverse trian-

gle inequality and (35) . The rate α depends on the regularity of

the QoI in the stochastic and physical space and the order of the

discretization scheme used to solve the PDE. It is possible to ap-

proximate the right-hand side term in (36) , numerically using the

MC method, which serves as an indicator of numerical error. 

From the central limit theorem, the sampling error due to N

samples is given as ∣∣∣∣E [ u h ] − E 

MC 
N [ u h ] 

∣∣∣∣2 

L 2 (�, D) 
= 

| | V[ u h ] | | L 2 (D) 

N 

, (37)

where | | V[ u h ] | | L 2 (D) is the L 2 − based variance approximated as 

| | V[ u h ] | | L 2 (D) : = 

∫ 
D 

∫ 
�

( E [ u h (x , ·)] − u h (x , ω) ) 
2 
d P d x , 

≈ 1 

N − 1 

N ∑ 

j=1 

∫ 
D 

( ( 

1 

N 

N ∑ 

i =1 

u h (x , ω i ) 

) 

− u h (x , ω j ) 

) 2 

d x . (38)

To obtain an optimized MC estimator for a given mesh D h , the

sampling error (37) should be equilibrated with the discretization

error (36) yielding the optimal value of N , 

N = O(h 

−2 α) . (39)

Note that with the above criteria, the RMS error in the estima-

tor E 

MC 
N 

[ u h ] reduces to O(h α) which is the best possible accuracy

which can be achieved on this grid. Further, if the computational

cost of obtaining one sample of the QoI (including costs for sam-

pling the random field, CFD simulation and post-processing) is ex-

pressed as O(h −γ ) where γ ≥ d is the rate at which the cost of one

sample grows with grid refinement and d is the spatial dimension.

The asymptotic cost of the standard MC estimator can then be ex-

pressed as 

W 

MC 
h,N = O(Nh 

−γ ) = O(h 

−2 α−γ ) . (40)

Finally, one can express ”accuracy-versus-work”, as: ∣∣∣∣E [ u ] − E 

MC 
N [ u h ] 

∣∣∣∣
L 2 (�, D) 

� 

(
W 

MC 
h,N 

) −α
2 α+ γ (41)

The rates α and γ can be empirically determined if they are not

known a-priori. It is pointed out that the cost of the estimator can

be reduced by using a higher-order discretization scheme (by in-

creasing α) or by an optimal CFD solver for which γ ≈ d . Obtaining

such solvers is difficult in fluid dynamics, and in general the solver

performance deteriorates with increase in the Reynolds number. 

4.2. MLMC estimator 

A multilevel Monte Carlo (MLMC) estimator is derived by gen-

eralising the standard MC method to a hierarchy of grids. Consider

a hierarchy of grid levels {D � } L � =0 
for the spatial domain D with the

largest cell-width for level � defined as 

h � = O(s −� h 0 ) , (42)

where M � is the total number of cells in the mesh D � , h 0 is largest

cell-width on the coarsest mesh D 0 and s > 0 represents a grid re-

finement factor. Now, using the linearity of the expectation opera-

tor, one can define the expected value of a QoI on the finest level

L by the following telescopic sum: 

E [ u L ] = E [ u 0 ] + 

L ∑ 

� =1 

E [ u � − u � −1 ] . (43)
n terms of the computational cost, it is cheap to approximate

 [ u 0 ] as the samples are computed on the coarsest mesh. Further-

ore, the correction term, E [ u � − u � −1 ] , can be accurately deter-

ined using only a few samples as the level-dependent variance,

 [ u � − u � −1 ] , is small compared to the sample variance, V [ u � ] . To

pproximate E [ u L ] , a multilevel estimator E 

ML 
L 

can be constructed

sing a sum of standard MC estimators: 

 [ u L ] ≈ E 

ML 
L [ u L ] := 

L ∑ 

� =0 

E 

MC 
N � 

[ u � − u � −1 ] , (44)

 

L ∑ 

� =0 

1 

N � 

N � ∑ 

i =1 

(u � (ω i ) − u � −1 (ω i )) , (45)

here u −1 = 0 is used for notational convenience. The number of

LMC samples N � ∈ N forms a decreasing sequence for increas-

ng � . In order to keep the variance of the correction terms small,

he MC samples u � (ω i ) − u � −1 (ω i ) , should be based on the same

andom input ω i for simulation on two consecutive levels � and

 − 1 . We will discuss this in detail in Section 4.2.2 . For the MLMC

stimator, an appropriate spatial interpolation method is required

o combine all expectations from the telescopic sum (44) . For in-

tance, when using the multilevel estimator to compute E 

ML 
L 

[ u L ] ,

e proceed as follows. We begin by computing E 

MC 
N 0 

[ u 0 ] on the

oarsest grid D 0 . This is then interpolated to the next finer grid

 1 and is added to the correction term E 

MC 
N 1 

[ u 1 − u 0 ] resulting in

 two-level estimate (a scalar field) E 

ML 
1 

[ u 1 ] . Similarly, this scalar

eld is further interpolated to the next grid and summed with the

ext correction term E 

MC 
N 2 

[ u 2 − u 1 ] . This process is repeated until

he finest level is reached. Another possibility is to interpolate all

xpectations to the finest level and then add them together. Based

n our experience, this may lead to interpolation artefacts in the

nal outcome. 

As each of the expectations in the above estimator is computed

ndependently, the variance of the multilevel estimator is the sum

f the variances of individual estimators, i.e. 

 

[
E 

ML 
L [ u L ] 

]
= 

L ∑ 

� =0 

V � 
N � 

, (46)

ith the level-dependent variance V � defined as 

 � : = | | V[ u � − u � −1 ] | | L 2 (D) 

= | | E [ u � (x , ·) − u � −1 (x , ·)] − (u � (x , ω) − u � −1 (x , ω)) | | 2 L 2 (�, D) , (47)

hich can be approximated as in (38) . Further, we assume that the

evel-dependent variance also decays with grid refinement with a

ositive rate β , thus V � = O(h 
β
� 
) . Similar to α, the rate β also de-

ends on the regularity of u ( x , ω) w.r.t. the spatial and stochastic

pace. For sufficiently smooth solutions, typically β = 2 α. 

The multilevel estimator for the variance can be defined as 

 

ML 
L [ u L ] := 

L ∑ 

� =0 

V MC 
N � 

[ u � ] − V MC 
N � 

[ u � −1 ] , (48)

here at level � , both variances V MC 
N � 

[ u � ] and V MC 
N � 

[ u � −1 ] are com-

uted as in (33) using samples computed from the same random

nputs { ω i } N � i =1 
. In the following section, we discuss the error asso-

iated with the MLMC estimator E 

ML 
L [ u L ] . A detailed analysis of the

ultilevel variance estimator can be found in [41] . 

.2.1. Accuracy of the MLMC estimator 

The MLMC estimator E 

ML 
L [ u L ] is obtained by two approxima-

ions, 

 [ u ] ≈ E [ u L ] ≈ E 

ML 
L [ u L ] . (49)
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t  
herefore, the MSE (mean-squared-error) in E 

ML 
L 

[ u L ] can be quan-

ified as ∣∣E [ u ] − E 

ML 
L [ u L ] 

∣∣∣∣2 

L 2 (�, D) 
≤ | | E [ u ] − E [ u L ] | | 2 L 2 (D) 

+ 

∣∣∣∣E [ u L ] − E 

ML 
L [ u L ] 

∣∣∣∣2 

L 2 (�, D) 
, (50) 

 (C 1 h 

α
L ) 

2 + 

L ∑ 

� =0 

V � 
N � 

, (51)

here C 1 is a constant. The first term at the right-hand side cor-

esponds to the discretization bias whereas the second term is the

um of sampling errors due to L + 1 MC estimators used in the

LMC approximation. Similar to a single-level MC method, the

ampling error is balanced with the discretization error. For this,

he number of level-dependent samples N � can be chosen such

hat each term 

V � 
N � 

is reduced to the order O(h 2 α
L 

) . Assuming a uni-

orm grid refinement, h � −1 = 2 h � , we can define a sample sequence

s 

 � = � N L 2 

β(L −� ) � , (52)

here N L is fixed and is used as a tuning parameter [42] . Ide-

lly, the value of N L should be chosen such that a balance V L /N L =
(h 2 α

L 
) is achieved. In practice, the value N L is often very small

O(1) and can be chosen heuristically. 

For a given tolerance ε, one can also solve an optimization

roblem that minimizes the total cost of the MLMC estimator [19] .

n this approach, the optimal choice of the level-dependent sam-

le N � requires a-priori values of the MLMC rates α, β and γ . In

ost cases, these rates are not available and have to be computed

sing a few ”warmup samples and levels”. The implementation of

his approach is slightly involved and non-trivial to parallelize. On

he other hand, with the sampling approach (52), the number of

amples on all levels is fixed in advance and can be parallelized

asily. Also, the rates α, β can be determined from the baseline

ANS simulations. We will numerically demonstrate the advantage

f this approach. 

The total cost of the MLMC estimator is 

 

ML 
L = 

L ∑ 

� =0 

N � W � , (53)

here W � = O(h 
−γ
� 

) corresponds to the cost of one sample on

evel � . We can conveniently express W 

ML 
L = O( 

∑ L 
� =0 2 

(γ −β) � ) lead-

ng to three cases. When the level-dependent variance V � decays

t a faster rate than the cost W � with levels (so, when β > γ ), the

ominant cost of the estimator comes from the coarsest level. For

= γ , all levels contribute equally in terms of the cost. Finally, if

< γ , the dominant cost comes from the finest level. The authors

n [19,42,43] have estimated the asymptotic work versus error for

he MLMC estimator. We directly state the accuracy versus work

stimate without going into the detailed derivations: 

∣∣E [ u ] − E 

ML 
L [ u L ] 

∣∣∣∣
L 2 (�, D) 

� 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

(
W 

ML 
L 

)− 1 
2 if β > γ , (

W 

ML 
L 

)− 1 
2 log 

(
W 

ML 
L 

) 1 
2 if β = γ , (

W 

ML 
L 

) −α
2 α+ γ −β if β < γ . 

(54) 

otice that for all these cases, the MLMC estimator has a

etter asymptotic cost than the standard Monte Carlo method

( W 

MC 
h,N 

) −α/ (2 α+ γ ) derived earlier. Moreover, a high-order discretiza-

ion scheme may increase α and β leading to a reduced number of

evels and a faster decay of the number of samples with level, re-

pectively. Lastly, if we have β = 2 α, the third case in (54) reduces
o (W 

ML 
L 

) −α/γ which is the same as the accuracy versus work es-

imate for a deterministic version of the problem. Thus, the multi-

evel estimator obtained in this way is sometimes regarded to be

ptimal , as the asymptotic cost is same as one deterministic solve

n the finest level in the hierarchy. 

We also point out that the sampling error on the coarsest level
V 0 
N 0 

does not depend on β , therefore, using the sampling strategy

52) may lead to over- or under-sampling of N 0 . However, this ap-

roach is asymptotically optimized with respect to the total com-

utational work [42,44] . More sophisticated sampling approaches

uch as the continuation multilevel Monte Carlo [45] estimators

an be employed to further optimize the number of samples. 

.2.2. Computation of E 

MC 
N � 

[ u � − u � −1 ] 

While computing samples at different levels for the MLMC esti-

ator, it is important to ensure that the telescopic identity (43) is

ot violated. Essentially, one needs to confirm that the random

amples u � while estimating E [ u � +1 − u � ] and E [ u � − u � −1 ] have the

ame expected value, i.e. 

 [ u � ] 
(coarse ) = E [ u � ] 

( f ine ) for � ∈ { 0 , 1 , 2 , ..., L − 1 } . (55)

herefore, a correct treatment of the random input on each two

evels is required. More precisely, when computing the sample

 � (ω i ) − u � −1 (ω i ) , the same realization of the eddy viscosity field

t ( ω i ) or the random Reynolds stress tensor R ( ω i ) should be used

or the simulation on the meshes D � and D � −1 . A common practice

s to first generate the random field on D � and then use a locally

veraged random field for the coarser grid D � −1 . However, caution

ust be taken while performing this local averaging step as the

pscaled versions of these random fields may not exhibit the same

ovariance structure as the finer level sample, violating (55) . There

re several ways to upscale the random inputs without changing

heir statistical properties. One way is to use the same random

ector { ξ j } N KL 
j=1 

in the truncated KL expansions at both levels: 

og ν� 
t (x � , ω i ) = log ν(bl) 

t (x � ) + 

N KL ∑ 

j=1 

√ 

λ j � j (x � ) ξ j , (56)

og ν� −1 
t (x � −1 , ω i ) = log ν(bl) 

t (x � −1 ) + 

N KL ∑ 

j=1 

√ 

λ j � j (x � −1 ) ξ j . (57)

his approach can be computationally expensive if the truncation

imension N KL is large. If the sampling meshes of the random

eld for the fine � and coarse � − 1 level are nested (which is

rue for vertex-centred grids), this problem can be trivially circum-

ented by injecting the random field from a fine to a coarse grid

ithout performing any type of averaging. For cell-centred grids,

here the sampling nodes are non-nested, sampling on a vertex-

entred grid twice as fine as finest level � can be use to produce

ame random field on levels � and � − 1 [46] . For instance, a sam-

le of the discrete random field which is generated on a vertex-

entred 129 × 129 grid can give valid random fields on 64 × 64 and

2 × 32 grids, which corresponding to levels � and � − 1 , respec-

ively. These injection based workarounds are very convenient to

mplement but can be computationally expensive for 3D flow prob-

ems, as the cost of sampling may become comparable to CFD sim-

lations. A third possibility is the covariance upscaling method as

roposed in [44] , which is also utilized in this paper (see Appendix

2). This method is efficient for large-scale problems where the

ost of sampling these random fields becomes significant or com-

arable to the cost of a CFD simulation. 

.3. MLMC-RANS implementation 

The MLMC-RANS framework is developed in MATLAB and in-

eracts with the OpenFOAM (Open source Field Operation And
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Table 2 

Specifications of the MLMC grid hierarchy for the square duct test 

case. “OF mesh” denotes the simulation mesh in OpenFOAM and 

“RF mesh” the grid used for the generation of the random Reynolds 

stress tensor. CPU time is the total time for one sample. 

Level ( � ) OF mesh h � RF mesh CPU time (sec) 

0 16 × 16 0.16 8 × 8 0.24 × 10 2 

1 32 × 32 0.08 16 × 16 0.68 × 10 2 

2 64 × 64 0.04 32 × 32 4.20 × 10 2 

3 128 × 128 0.02 64 × 64 2.86 × 10 3 

4 256 × 256 0.01 128 × 128 2.93 × 10 4 
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r  
Manipulation) CFD package [47] . It is available from the authors

upon request. MATLAB based programs are responsible for the

generation of random inputs (eddy viscosity fields and Reynolds

stress tensors), invoking OpenFOAM with random inputs, the col-

lection of samples of the QoI and post-processing. Within Open-

FOAM, schemes for computation of the gradients and divergence

are based on second-order finite volume (FV) approximations. The

baseline solution of the turbulence models is obtained using the

simpleFoam solver [48] available in OpenFOAM, and to propa-

gate the random eddy viscosity and random Reynolds stresses dif-

ferent solvers were implemented for the stochastic momentum

Eqs. (15) and (30) , respectively. 

While the propagation of random eddy viscosity is straightfor-

ward and doesn’t require modification of the solver in general, the

propagation of random Reynolds stresses is numerically more chal-

lenging. To achieve numerically stable performance of the solver,

we adopt a blending of the random Reynolds stress, which we

wish to propagate, and a contribution based on the Boussinesq

assumption [49] . While the latter alters the propagated effective

Reynolds stress, it promotes numerical convergence of the solver.

The momentum Eq. (30) is modified accordingly, 

ρ( u · ∇) u i = − ∂ p 

∂x i 
+ 

∂ 

∂x j 

(
R i j + (1 − ξ ) R 

(bl) 
i j 

+ ξR i j (ω) 
)
, (58)

in which the linear eddy viscosity contribution R (bl) 
i j 

is given in

(4) . The production of turbulent kinetic energy is modified accord-

ingly. The blending parameter ξ ∈ [0, 1] quantifies the amount of

R (bl) 
i j 

to increase numerical stability. For ξ = 1 , we achieve the full

propagation of the random tensor field. This is possible in case

of simpler flows, for e.g., flow in a square duct. Also, the value

of ξ is linearly increased with the number of iterations (ramp-

ing) to a constant value. Note that a value of ξ < 1 indirectly cor-

responds to a lower variance, than specified for a given disper-

sion δ, however, obtaining a direct relation between ξ and δ is

non-trivial. 

To facilitate the analysis, our implementation of the MLMC

method is based on a pre-defined geometric hierarchy of meshes

such that the largest cell width follows h � −1 ≈ 2 h � . In general, an

MLMC estimator can be constructed with any hierarchy for which

the accuracy and cost increase with the levels. The quality of the

mesh at any given MLMC level � is assessed using the dimension-

less wall distance, defined as y +1 
� 

= h cc 
� u 

∗
� /ν where h cc 

� denotes the

distance of the cell-centers adjacent to the wall, u ∗� is the friction

velocity defined as u ∗� = 

√ 

τw 

� 
/ρ with τw 

� = μ(∂ u/∂ y ) y =0 . Standard

notation ν and μ is used for kinematic and dynamic viscosities, re-

spectively. For resolving the viscous sublayer, the y +1 
� 

value should

be less than one, however, this criterion can be relaxed for coarser

levels in the MLMC hierarchy provided that the RANS solution re-

sults in a meaningful flow field. Furthermore, we check that the

level-dependent variance should be strictly less than the pure sam-

ple variance of the quantity of interest, i.e., | | V[ u � − u � −1 ] | | L 2 (D) <| | V[ u � ] | | L 2 (D) . Violation of this condition may result in an

MLMC estimator which is more expensive than a standard MC

estimator. 

As this work involves stationary covariance models, we use a

spectral generator for the fast sampling of the Gaussian random

fields. It is pointed out that with this algorithm the computa-

tional cost of sampling a random field is of the order O(M � log M � ) ,

where M � is the number of mesh points on any level � and is negli-

gible compared to the cost of one CFD solve at that level. Addition-

ally, the random fields generated using spectral methods are exact

on the sampling mesh. In case of the KL expansion based sampling,

one needs to quantify the error incurred due to the truncation of

the eigenmodes. 
. Numerical experiments 

We use two test problems, a fully developed turbulent flow in

 square duct and a flow over a periodic hill, to study the per-

ormance of the MLMC method. A bulk Reynolds number Re =
100 is considered for the square duct flow with benchmark data

vailable from Huser et al. (1993) [50] . This problem has become

 standard test case to demonstrate the inability of linear eddy

iscosity models to predict the secondary flows that arise from

he normal stress imbalance. Linear eddy viscosity models assume

qual normal stresses and completely fail to predict secondary flow

eatures, resulting in parallel flow. We only employ the random

eynolds stress model for this test case as the random eddy vis-

osity model suffers from the same drawback as the determinis-

ic linear eddy viscosity model and fails to produce any secondary

ows. For the periodic hill problem, we use Re = 2800 with the

NS data from Breuer et al. (2009) [51] . This is a complex bench-

arking test problem, offering a number of flow features such as

nisotropy, strong streamline curvature, a recirculating zone and

ree shear layer, that are challenging for RANS turbulence models.

oth stochastic models are analyzed for the periodic hill flow. 

.1. Flow in a square duct 

A schematic representation of the square duct flow is presented

n Fig. 1 (left) showing the eight-vortex pattern with counter-

otating vortices in each quadrant. Due to symmetry, we choose

o simulate the flow only for the top-right quadrant on a domain

f size [0, H ] × [0, H ], where H = 1 is the half-height of the square

uct. We use a separate grid hierarchy for the OpenFOAM simu-

ations and for sampling the random fields, denoted by OF and

F meshes, respectively, with specifications listed in Table 2 . For

he OF meshes, each grid level is graded with finer cells along the

op and right walls to resolve boundary layers, see Fig. 1 (right).

n the case of RF meshes, the random fields are first sampled on

 uniform Cartesian mesh in the domain [0, 1] 2 and are then in-

erpolated to the cell-centers of the RANS simulation mesh. The

PU times on a serial machine required to obtain one sample on

ach level is also provided in Table 2 . For the considered combina-

ion of numerical schemes, the CPU times scale roughly as O(h −3 
� 

)

in other words, γ ≈ 3). This is due to the fact that the conver-

ence rate of the solver deteriorates with grid refinement, there-

ore, the number of iterations required to reach a fixed residual tol-

rance also grows with levels. Additionally, the residual tolerance

lso needs to be reduced with grid refinement in order to obtain

 converged solution upto the discretization accuracy, and on the

nest levels one sample takes about eight CPU hours to obtain a

esidual reduction of O(10 −8 ) . 

.1.1. MLMC with RRST model 

We begin by analyzing the statistics of the random Reynolds

tress tensors for two sets of parameters (Case 1 and Case 2) as

pecified in Table 3 . Here, we can regard Case 1 as an “easy” pa-

ameter set, with a low dispersion and large correlation lengths
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Fig. 1. Schematic representation of time-averaged flow in a square duct (left) showing the 8-vortex pattern with each quadrant exhibiting vortices of alternating sign. (Right) 

Nested meshes � = 0 (light blue) and � = 1 (dark blue) used to simulate the flow in the top-right quadrant, grading near the walls. 

Table 3 

Parameter sets to generate random Reynolds stress tensor for the square duct 

flow. 

Parameter Description Case 1 Case 2 

l y / H, l z / H Correlation length along y / z -direction 2 1 

σ 2 
c Variance of log-normal random field 1 1 

δ( x ) Dispersion parameter 0.1 0.4 

N PC Order of polynomial chaos expansion 5 5 

ξ Blending factor 1 1 
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c  

e  
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r  
nd Case 2 as “more complex” with a large dispersion and small

orrelation lengths. For both cases a 5th order gPC expansion is

sed such that errors in approximating the random field are neg-

igible compared to the discretization and sampling errors. In this

ork, we will only consider cases with a constant dispersion, but a

ore general approach can be based on a spatially varying disper-

ion based on available data and expert knowledge as in [13,14] .

or both cases, a full propagation of the random Reynolds stress

i.e. ξ = 1 ) is considered. 

In Fig. 2 , we present examples of the first three Reynolds stress

omponents, R 11 , R 12 , R 13 , generated using the two parameter sets

long with the baseline Reynolds stress tensors R ( bl ) (derived from

he k − ω model). Firstly, we verify the constraint E [ R ] = R (bl) 

y computing the empirical probability distribution using around

.6 × 10 4 samples on the coarsest 16 × 16 grid level. The empirical

DFs for the first three components of the Reynolds stress at a lo-

ation inside one of the vortices (y/H, z/H) = (0 . 52 , 0 . 21) are pre-

ented in Fig. 3 for the two cases. The PDFs of other components of

he Reynolds stress tensor exhibit similar behaviour, and are omit-

ed. We observe that the sample mean is very close to the base-

ine value and for Case 2, due to a larger δ, a slight deviation ( ∼
 × 10 −4 ) from the baseline is observed, consistent with the sam-

ling error. The state of the anisotropy resulting from the samples

f the random Reynolds stresses is visualized using the barycentric

riangle [52] in Fig. 4 . Again the probability density contours are

ased on 1.6 × 10 4 samples at location (y/H, z/H) = (0 . 52 , 0 . 21) for

ach case. The procedure to construct these contours is explained

n Appendix A1. We observe that the distance between the state of

nisotropy obtained from the baseline simulation and the sample

ean is sensitive to the dispersion parameter. For a larger disper-

ion, many samples fall away from the baseline state but due to

he positive-definite constraint they are restricted until the edges

f the barycentric triangle. Thus, the sample mean is located far
rom the baseline anisotropy state, see [14] for details. The effect

f this constraint is mild for a smaller dispersion and the mean

nisotropy state is very close to the baseline. 

We begin by studying the FV error convergence for Case 1 and

ase 2. We will only consider the u and v components of the ve-

ocity as w has similar characteristics as v . In Fig. 5 , we show the

elative error || u � − u � −1 || L 2 (�, D) along with the FV errors from the

eterministic RANS simulations (based on the k − ω model) plot-

ed against the maximum cell width h � . The relative error for v

s also presented in Fig. 5 (right). As the deterministic RANS sim-

lation predicts v = 0 , we again use the deterministic error in u

or comparison of the FV convergence rates. These relative errors

re computed with a sufficient number of samples such that sam-

ling errors on each level are less than the FV bias. We observe

 convergence of O(h 1 . 5 � ) (rounded to one decimal place) for the

eterministic simulations and further note that the stochastic ver-

ion of the FV error also decays at a similar rate. Here, we remark

hat although we use second-order accurate schemes, a slightly

lower error convergence is obtained, most likely due to the non-

niformity of the meshes used. Also, deterministic simulations on

he finest 256 × 256 grid, OpenFOAM has convergence issues. In-

erestingly, this is not observed for the stochastic simulations. Fur-

her, due to a higher value of the dispersion parameter δ for Case

, compared to Case 1, we see a larger absolute numerical error,

ut it decays at a similar rate. These plots are important in order

o determine the number of levels that should be included in the

LMC hierarchy to reduce the RMSE to a given tolerance ε. For

he standard Monte Carlo simulation, the error associated with a

articular mesh is utilized to determine the number of samples

eeded on that mesh, to equilibrate the sampling error with the

iscretization error, as in (39) . 

The convergence of the level-dependent variance | | V[ ·] | | L 2 (D) is

hown in Fig. 6 . For reference, an O(h 3 � ) convergence line is plotted

o emphasize β ≈ 2 α. The significance of these plots is that they

an be used to assess the sampling variance at different levels and

xtract the rate β used to determine the MLMC sample sequence

n the formula (52) . We observe a higher variance for larger dis-

ersion from Case 2 compared to Case 1, as expected. We point

ut that the above convergence study can be quite expensive, as

any samples over all the levels are needed to obtain accurate es-

imates of the MLMC rates α, β . The purpose of the above anal-

sis is to (i) demonstrate that the FV error decay rate extracted

rom the deterministic solves can be an accurate estimate of the

ate α and (ii) verify that the assumption β = 2 α holds. With a
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Fig. 2. Reynolds stress components, R 11 , R 12 , R 13 , obtained from the baseline k − ω model (top row) and an example of perturbed random Reynolds stresses generated from 

Case 1 (middle row) and Case 2 (bottom row). 

Fig. 3. Empirical PDF of the Reynolds stress components at location (y/H, z.H) = (0 . 52 , 0 . 21) for Case 1 ( δ = 0 . 1 ) and Case 2 ( δ = 0 . 4 ). For the diagonal component R 11 , a 

gamma marginal distribution is obtained and for the off-diagonal components R 12 , R 13 , Gaussian distributions are observed. 
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Fig. 4. Probability density contours for random Reynolds stresses at location (y/H, z/H) = (0 . 52 , 0 . 21) projected to the barycentric triangle based on 1.6 × 10 4 samples on 

� = 0 . 

Fig. 5. Convergence of the FV error with levels along with error in baseline solution of u . Dotted line denotes the empirical convergence rate of baseline RANS simulations. 

Fig. 6. Convergence of the level-dependent variance with grid refinement. The dotted line depicts an O(h 3 � ) convergence. 
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xed β , we can obtain the number of samples on all MLMC lev-

ls in advance and can efficiently distribute the work on a com-

uting cluster. Alternatively, one can also implement the standard

LMC algorithm [19,43] which adaptively computes and refines

hese parameters along with the number of samples on each level

ntil a prescribed tolerance is achieved. Note that for such algo-

ithms, optimal load balancing is non-trivial as the number of sam-

les predicted on the different levels after every refinement stage

aries. 

Next, we compare the accuracy and computation cost of the

LMC and MC estimators to compute the mean and variance. For

his analysis the in-plane velocity v is chosen as the quantity of in-

erest. To measure the accuracy, we rely on the following relative
rror measure [42,44] : 

 rel := 

|| E re f [ v ] − E 

ML 
L [ v L ] || L 2 (D L ) 

|| E re f [ v ] || L 2 (D L ) 
. (59) 

ere, E 

ML 
L 

[ v L ] can be replaced by the standard MC estimator

 

MC 
N 

[ v h ] . Analogously, the relative errors in the variance estimators

 

MC 
N 

and V ML 
L 

are also computed. For the MLMC estimator, we com-

ute the mean and variance for different h L (or h for the standard

C). These experiments are conducted 16 times to eliminate statis-

ical fluctuations and the mean relative error ε rel is reported. The

eference solutions for the expected value E re f [ v ] and the variance

 re f [ v ] are computed using the 5-level MLMC estimator. Reference

olutions will be discussed in detail later on. 



12 P. Kumar, M. Schmelzer and R.P. Dwight / Computers and Fluids 201 (2020) 104420 

Fig. 7. (Left) Comparison of the mean relative error ε rel in the expected value of v for different meshes for Case 1. (Right) Computational work versus accuracy for the MC 

and MLMC estimators. Dotted lines show the predicted asymptotic cost for the MC (blue) and MLMC (red) estimators. 

Table 4 

Number of samples used for the MLMC estimators with differ- 

ent L for the square duct flow. The 5-level MLMC estimator was 

utilized as the reference solution. 

No. of levels ( L + 1 ) Level-wise samples N � 

N 0 N 1 N 2 N 3 N 4 

1 8 - - - - 

2 64 8 - - - 

3 512 64 8 - - 

4 4096 512 64 8 - 

5 (ref) 32768 4096 512 64 8 
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Based on the deterministic FV error convergence study, we fix

α = 1 . 5 and β = 2 α = 3 and γ = 3 (see Table 2 ). Thus, for the

MLMC estimator, we get a sample sequence N � = N L 2 
3 (L −� ) based

on the formula (52) . Note that we have β ≈γ and therefore we can

obtain an MLMC estimator for which all levels contribute equally

in terms of the cost, see (54) . As mentioned earlier, the number

of samples on the finest level N L is a free parameter and should

be set to a small value. For all experiments, we use N L = 8 . In

Table 4 , we list the number of level-wise samples for the MLMC

estimators with different L . For the standard (or single-level) MC

estimator, the number of samples is decided according to (39) re-

sulting in N = O(h −3 ) . This means that the number of MC samples

should be increased by a factor of eight with each grid refinement.

The standard MC simulation was conducted on three grids: 16 × 16,

32 × 32 and 64 × 64 with samples 8, 64 and 512, respectively. The

standard MC was not performed on the grid 128 × 128 due to pro-

hibitively large computational cost, as we would need to compute

about 4096 samples on this grid. 

In Fig. 7 (left), we show the mean relative errors in the ex-

pected value of v computed using the MC and MLMC estimators

for Case 1. We observe that the plain MC estimator is slightly more

accurate than the MLMC estimator for same finest grid h L . The

computational cost versus the accuracy for both methods is also

shown in Fig. 7 (right) and we observe that the MLMC estimator

achieves same accuracy for a lower computational cost compared

to the MC estimator. For reference, the predicted asymptotic cost

of the MC (40) and MLMC (54) estimators for the considered α, β
and γ are also presented. Similarly, the error and runtime from the

two variance estimators are compared in Fig. 8 . Ideally, the cost of

the MLMC estimator is expected to grow at half the rate of the MC

estimator but this is not clearly visible for the multilevel estimator

for the mean. This may very well be a pre-asymptotic effect. Nev-

ertheless, the gains are more pronounced for the multilevel vari-

ance estimator and we clearly observe the cost scaling close to the

predicted rate. 
We now compare the stochastic solutions (mean and variance)

or the RRST model computed using the 5-level estimator for Case

 and 2 with the DNS data. The goal in this setting is to es-

ablish that the stochastic model is sufficiently general to (reli-

bly) envelope DNS data at high probability as required for a good

rior. 

In Fig. 9 streamlines and magnitude of the in-plane velocities

rom the two cases are compared with the DNS data. We have ob-

erved that the size and the number of vortices are sensitive to

he correlation length; shorter lengths leading to more vortices.

he secondary motions are entirely driven by the RRST model with

agnitude of the velocities dependent on the value of the disper-

ion parameter. The mean ± one standard deviation for the v ve-

ocity component at three locations is shown in Fig. 10 . We see

hat the two standard deviations envelopes the entire DNS veloc-

ty well. It is also pointed out that for Case 2, an even larger en-

eloping region is obtained. As mentioned earlier, we do not take

nto the account any available data and the hyper-parameters con-

idered to generate the random Reynolds stresses were chosen ar-

itrarily. This high sensitivity of mean velocities with respect to

hange in Reynolds stresses is also demonstrated in [53] where an

rror of 1% in Reynolds stresses resulted in about 30% error in the

ean velocity profile for the plane channel flow. 

We have propagated the uncertainty with about 10 5 degrees

f freedom on the finest level due to six Reynolds stress compo-

ents each sampled on a 128 × 128 grid. Note that there is a neg-

igible change in the computational cost with an increase in di-

ensionality. Although, the uncertain dimension can be reduced

y using the KL expansion one might still have to deal with a rel-

tively large number of uncertainties rendering any deterministic

ampling method impractical (for instance, the stochastic colloca-

ion method). 

.2. Flow over periodic hills 

The specification of the periodic hill geometry is adopted from

51] . The time-averaged flow from the DNS data is shown in

ig. 11 a. The size of the computational domain is D x = 9 H and

 y = 3 . 036 H along the streamwise and wall-normal direction, re-

pectively, with H = 1 denoting the hill height. The hill crest is sit-

ated at (x/H, y/H) = (0 , 1) . Periodic boundary conditions are ap-

lied along inlet and outlet boundaries and a solid stationary wall

t the top and the bottom. The Reynolds number of the flow is

iven by Re = u b H/ν = 2800 where u b is the average velocity above

he hill crest and ν is the molecular viscosity. The numerical solu-

ions are obtained on a curvilinear block-structured grid with two

locks of size [0, 9] × [0, 2] and [0, 9] × [2, 3.036], and refinement

ear the lower and upper walls. 
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Fig. 8. (Left) Comparison of the mean relative error ε rel in the variance of v for different meshes for Case 1. (Right) Computational work versus accuracy for the MC and 

MLMC estimators. 

Fig. 9. Comparison between the 5-level MLMC solution and the benchmark DNS data of the in-plane velocities v and w . Streamlines are constructed using E ML 
L [ v L ] and 

E ML 
L [ w L ] ( L = 4 ) and contour indicates the magnitude of in-plane velocity vector ( E ML 

L [ v L ] , E ML 
L [ w L ]) . Notice that with increase in dispersion δ an increase in the magnitude is 

observed. 

Fig. 10. Mean E ML 
L [ v L ] and variance V ML 

L [ v L ] of the v -component of the velocity computed using the 5-level estimator for Case 1 at three spanwise locations y/H = 

0 . 25 , 0 . 50 and 0 . 75 with comparison to the baseline and DNS data. 
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Similar to the square duct case here also we use a pre-defined

ierarchy of nested grids D � such that we have h � ≈ 0 . 5 h � −1 . In

ig. 11 b, the two coarsest meshes are plotted. Also, the distribution

f the y +1 
� 

values (from the Launder-Sharma k − ε model) along

he lower wall for the five grids levels is depicted in Fig. 12 . All

rid levels except the coarsest satisfy the criterion y +1 < 1 . A sep-

rate grid hierarchy is used for the generation of the random fields.

or a given grid level, these random fields are first sampled on

 uniform rectangular mesh in a domain-sized [0, 9] × [0, 3] and
 p  
re then interpolated to the cell-centres of the RANS simulation

esh. In Table 5 , we list the specification for the different levels

nd the CPU times needed to obtain one sample on each level. For

he considered combination of numerical schemes, we again ob-

erve a cost scaling roughly as O(h −3 
� 

) or γ = 3 . 

.2.1. MLMC with the REV model 

We now analyze the performance of the MLMC method for the

eriodic hill flow using the random eddy viscosity (REV) stochas-
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Fig. 11. (a) Time-averaged flow on a periodic hill with Re = 2800 obtained from DNS data (Breuer et al. 2009) and (b) Nested curvilinear grids, the light blue lines depict 

16x24 grid corresponding to � = 0 and dark blue lines depict 32x48 grid corresponding to � = 1 . 

Fig. 12. The y +1 
� values along the lower wall computed from the baseline simulations. 

Fig. 13. Baseline EV field from the Launder-Sharma k − ε model (left) and typical realizations of REV fields generated using the parameter set from Case 1 (middle) and Case 

2 (right). 

Fig. 14. Convergence of the FV error with levels along with error in baseline solution. The dotted line denote the empirical convergence rate of baseline RANS simulations. 
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Fig. 15. Convergence of the level-dependent variance for different grids. The dotted line depicts an O(h 2 � ) convergence. 

Fig. 16. (Left) Comparison of the mean relative error ε rel in the expected value of u for different meshes for Case 1. (Right) Computational work versus accuracy for the MC 

and MLMC estimators. Dotted lines show the predicted asymptotic cost for the MC (blue) and MLMC (red) estimators. 

Fig. 17. (Left) Comparison of the mean relative error ε rel in the variance of u for different meshes for Case 1. (Right) Computational work versus accuracy for the MC and 

MLMC estimators. 
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b  

u  
ic model. To generate the samples of the random eddy viscosity

wo set of parameters are utilized, denoted by Case 1 and Case 2,

ee Table 6 . The two cases differ only in terms of the correlation

ength along the x- and y-directions. In Fig. 13 , we show an ex-

mple of a REV field for each case along with the baseline field
(bl) 
t (x ) obtained from the converged solution from a k − ε model

t the finest level D 4 with 256 × 384 cells. Due to small correlation

engths for Case 2, we observe more peaks in the random eddy

iscosity field with a relatively large magnitude. Here, for the sake

f generality we do not consider a periodic random eddy viscosity

eld, but, can be easily implemented as the circulant embedding

ethod naturally yields a periodic random field. 

We perform a similar analysis as the square duct flow to obtain

he MLMC parameters. We begin by comparing the FV error in the
eterministic and stochastic version of the problem for the stream-

ise velocity u and the wall shear stress τw in Fig. 14 . The error in

he baseline converges as O(h � ) for both quantities of interest. The

rror in the random variables also decays at roughly the same rate.

ere too the slower convergence rate can be primarily attributed

o complex curvilinear meshes. Also, note that the relative errors

n Case 1 and 2 are very close, indicating that they result in simi-

ar mean solutions. The sampling variance on different levels is de-

icted in Fig. 15 . As expected the variance decays at a rate twice of

he discretization error coinciding with observations made in case

f the square duct flow. 

From the above study, we again illustrate that the rate from the

aseline solution can provide a good estimate for the MLMC sim-

lation parameters. Next, we analyze the relative errors in the MC
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Fig. 18. Variance field V ML 
L [ u L ] for the streamwise velocity u computed using the 5-level estimator. Variance is large near top and bottom boundary layers. 

Fig. 19. Mean and variance of the streamwise velocity computed using the 5-level estimator and comparison with DNS data at locations x/H = 1 , 2 , 3 , ..., 8 . Velocities are 

scaled by a factor of two to facilitate visualization. 
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M  
and MLMC estimators for the streamwise velocity u in a similar

fashion as for the square duct flow. As the quantity of interest we

consider the streamwise velocity u and set α = 1 and β = 2 α = 2

and γ = 3 . Recall that, with these rates we end up in the third sce-

nario γ > β in (54) , resulting in an asymptotically optimal MLMC

estimator. The level-wise samples for the MLMC estimator is given
y N � = N L 2 
2(L −� ) with N L = 8 . The number of samples for the

LMC estimator with different L is given in Table 7 . The refer-

nce solutions for the mean and variance E re f [ u ] and V re f [ u ] , re-

pectively are again based on the 5-level estimator. In case of the

tandard MC estimator, we follow N = O(h −2 ) , thus the number of

C samples is increased by a factor of four with grid refinements.
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Fig. 20. Mean and variance of the wall shear stress τ w computed using the 5-level estimator and comparison with DNS data. 

Table 5 

Specification of the MLMC grid hierarchy for the periodic hill case 

with Re = 2800 . “OF mesh” denotes the simulation mesh in Open- 

FOAM and “RF mesh” denotes the grid used for the generation of the 

random eddy viscosity field. CPU time is the total time for one sam- 

ple. 

Level ( � ) OF mesh h � RF mesh CPU time (sec) 

0 16 × 24 0.5625 24 × 8 0.26 × 10 2 

1 32 × 48 0.2812 48 × 16 0.69 × 10 2 

2 64 × 96 0.1406 96 × 32 6.82 × 10 2 

3 128 × 192 0.0703 192 × 64 5.01 × 10 3 

4 256 × 384 0.0352 384 × 128 4.70 × 10 4 

Table 6 

Parameter sets to generate random eddy viscosity field for the periodic hill 

flow. 

Parameter Description Case 1 Case 2 

l x / H Correlation length along x-direction 1.5 0.6 

l y / H Correlation length along y-direction 0.5 0.2 

σ 2 
c Marginal variance of the random field 0.5 0.5 

T  

3  

s

 

u  

d  

a  

e  

F  

Table 7 

Number of samples used for the MLMC estimators with dif- 

ferent L for the flow over periodic hills. The 5-level MLMC 

estimator was utilized as the reference solution. 

No. of levels ( L + 1 ) Level-wise samples N � 

N 0 N 1 N 2 N 3 N 4 

1 8 – – – –

2 32 8 – – –

3 128 32 8 – –

4 512 128 32 8 –

5 (ref) 2048 512 128 32 8 

e  

s  

a  

c  

p  

f  

s  

t  

o  

b

 

5  

m  

c  

t  

i  

M  
he standard MC simulation is conducted on four grids: 16 × 24,

2 × 48, 64 × 96 and 128 × 192 with samples 8, 32,128 and 512, re-

pectively. 

The mean relative error in the expectation of u approximated

sing the MC and MLMC methods is shown in Fig. 16 . The ran-

om eddy viscosity is based on Case 1. Both estimators are able to

chieve similar accuracies, of order O(h L ) . Also, the cost for both

stimators scales similarly to the theoretical predictions in (54) .

or L = 3 , we see a speedup of up to 30 times using the MLMC
stimator. In the case of the variance estimator in Fig. 17 , we ob-

erve slightly slower rates and the MLMC method appears to be

 bit more accurate for the same grid. In terms of computational

ost, similar gains are observed as for the expected value of u . We

oint out that for the MLMC estimator, the dominant cost comes

rom the finest level and as the number of samples N L is a con-

tant, we obtain a computational complexity of O(h −3 
L 

) . This is, up

o a constant term, the same as solving one deterministic problem

n the finest level, thus the MLMC estimator for this problem can

e regarded as optimal. 

Next we compare the reference solutions computed using the

-level MLMC estimator with the REV model and DNS data. The

ain motivation of using the REV model was to obtain an un-

ertainty bound of the QoIs due to uncertainties arising from the

ransport equations or the closure parameters. Therefore, we are

nterested in the computations of the variance field using the

LMC method. In Fig. 18 , the variance field for the streamwise
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Fig. 21. Comparison of sample profiles of R 12 at different locations along with baseline values. 

Fig. 22. Convergence of the FV error with levels for the RRST model along with the error in baseline solution. The dotted line depicts O(h � ) convergence. 

Fig. 23. Convergence of the level-dependent variance for the RRST model. The dotted line depicts an O(h 2 � ) convergence. 

Fig. 24. (Left) Comparison of the mean relative error ε rel in the expected value of u for different meshes for Case 1. (Right) Computational work versus accuracy for the MC 

and MLMC estimators. Dotted lines show the predicted asymptotic cost for the MC (blue) and MLMC (red) estimators. 
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Fig. 25. (Left) Comparison of the mean relative error ε rel in the variance of u for different meshes for Case 1. (Right) Computational work versus accuracy for the MC and 

MLMC estimators. 

Fig. 26. Variance field V ML 
L [ u L ] for the streamwise velocity u computed using the 4-level estimator. 
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Table 8 

Parameter sets to generate random Reynolds stress tensor for the flow over 

periodic hills. 

Parameter Description Case 1 Case 2 

l x / H Correlation length along x -direction 1.5 0.6 

l y / H Correlation length along y -direction 0.5 0.2 

σ 2 
c Variance of log-normal random field 1 1 

δ( x ) Dispersion parameter 0.2 0.4 

N PC Order of polynomial chaos expansion 5 5 

ξ Blending factor 0.6 0.6 
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a  
ise velocity u for the two cases based on the 5-level estimator is

hown. A relatively high variance is observed near boundary lay-

rs and near the recirculation zone around 0.5 < x / H < 4.5. Case 1

s visibly able to generate a larger variance than Case 2 indicat-

ng that larger length scales can produce larger variation. Also, in

ig. 19 , the mean ± one standard deviation is compared with the

NS data at various locations. It can be seen that the MLMC veloc-

ty profiles are very close to the baseline RANS solution for both

ases. Further, we observe that this stochastic model is less sen-

itive in the free shear layer as it fails to capture the DNS data

ery well. However, we have tested that a combination of larger

arginal variance σ 2 
c and length scales l x / H, l y / H can result in a

arger uncertainty bound around the free shear layer. Despite ran-

omly chosen turbulence models, interesting regions such as flow

eparation and reattachment can be detected from the variance

eld. Lastly, the mean and standard deviation obtained for the wall

hear stress τw are also compared with the DNS data in Fig. 20 .

argest variances appear near the baseline reattachment point x (bl) 
re 

ear x / H ≈ 4 for both the cases. For comparison, the DNS data is

lso plotted which falls within ± one standard deviation bound of
w for both cases. 

The reference solution presented above is based on 5 × 10 4 de-

rees of freedom because the random eddy viscosity field on the

nest mesh was sampled on a 384 × 128 grid. Here too, the KL ex-

ansion based dimension reduction can be employed and may still

esult in a large number of random inputs, especially when the

ize of the domain is much larger than the correlation lengths. 

.2.2. MLMC with the RRST model 

In the final numerical experiment, we test the performance of

he MLMC method with the RRST model applied to the periodic

ill test case. We use the same 5-grid hierarchy as was considered

or the random eddy viscosity experiments to study the conver-
ence of the bias and sampling error with respect to the levels.

lso, the same number of OpenFOAM iterations was used to prop-

gate the random stress tensor as was used to propagate the ran-

om eddy viscosity, thus, we have same the CPU time per sample

s was given in Table 5 (neglecting the cost for sampling a single

andom tensor field). The two parameter sets for generating the

andom tensor fields are listed in Table 8 . For a fair comparison,

e fix the blending parameter to ξ = 0 . 6 for both cases, although

 higher blending is possible for the easier Case 1. Sample pro-

les of R 12 for the two cases are compared in Fig. 21 along with

he baseline profile R (bl) 
12 

(from the k − ε model). The effect of a

arger dispersion and small correlation lengths is clearly visible for

ase 2. 

We begin by analyzing the convergence of the FV bias with grid

efinements in Fig. 22 for the streamwise velocity (left) and the

all shear stress (right). A first-order convergence is seen for the

rst four levels, similar to the REV model. But for both the cases,

 further refinement to 256 × 384 grid does not lead to any im-

rovement in the FV bias. A similar behaviour is observed for the

evel-dependent variance in Fig. 23 , where the fifth level exhibits

 larger variance compared to the fourth level. Therefore, adding
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Fig. 27. Mean and variance of the streamwise velocity computed using the 4-level estimator and comparison with DNS data at locations x/H = 1 , 2 , 3 , ..., 8 . Velocities are 

scaled by a factor of two to facilitate visualization. 
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files. 
next finer 256 × 384 grid in the MLMC hierarchy will not further

improve the accuracy of the MLMC estimator but will lead to a

more expensive estimator. 

As we have similar rates as for the α, β , γ as the REV model,

we use the same number of MLMC samples, from Table 7 . Simi-

larly, for the plain MC method 8,32,128 samples are used for the

16 × 24, 32 × 48 and 64 × 96 grids, respectively. The reference so-

lution for the mean and variance, E re f [ u ] and V re f [ u ] , are based on

a 4-level Monte Carlo estimator as the fifth level does not provide

any improvement in the accuracy (for the considered solver). In

Figs. 24 and 25 , we show the mean relative errors and cost scaling

for the mean and variance for Case 1. The speedup is similar to the

REV model and close to the theoretically predicted rates. 

The variance fields computed using the 4-level Monte Carlo for

the two cases are presented in Fig. 26 . The mean ± standard de-

viation of u at different locations is compared with the baseline

and DNS data in Fig. 27 . As expected, a larger enveloping region is

obtained for larger dispersion δ. The mean ± two standard devi-

ations for the wall shear stress is also plotted in Fig. 28 . Again, a

high variation is observed near the reattachment points obtained
rom the RANS simulation. We see that the DNS data falls within

 standard deviations for both cases. We remind readers that the

tandard deviation observed are underestimated as the random

ensor only contributes 60% of the propagated Reynolds stress ten-

or. For both quantities of interest, the observed means are very

lose to the baseline RANS solution, possibly indicating approxi-

ately linear dependence of u on the randomized RST. 

Velocity variance plots from both REV ( Fig. 18 ) and RRST

 Fig. 26 ) models show similar characteristics. For both the cases,

arge variances are observed around the highly turbulent ”fan-

haped” region originating from the hill crest. Highly turbulent re-

ion is identified using the experimental data from Breuer et al.

2009) [51] . Other factors, for instance, a sharp velocity gradi-

nt near the boundary layer and around locations where the flow

tarts to separate also contribute to large variances. We also point

ut that for the REV model a high correlation length exhibits large

ariances and is also less sensitive to increase in the marginal vari-

nce of the covariance function. For the RRST model, we clearly see

he effect of increased dispersion parameter on the variance pro-
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Fig. 28. Mean and variance of the wall shear stress τ w computed using the 4-level estimator and comparison with DNS data. 
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. Summary and conclusions 

In this paper, we undertook first steps towards solving high-

imensional stochastic formulations of RANS turbulence models

sing the multilevel Monte Carlo method. We demonstrated the

fficiency of the MLMC method using two stochastic models based

n a perturbation of the baseline eddy viscosity field and the base-

ine Reynolds stress tensor field. The MLMC estimator proposed is

nly slightly more involved than the plain MC estimator but results

n a large speedup. The savings afforded by employing coarser lev-

ls allowed us to incorporate finer meshes thereby enabling the

omputation of the mean and variance with higher accuracy. We

emonstrated that for QoIs for which the level-dependent variance

ecays slower than the growth rate of computational cost with

evel (i.e. γ > β), an optimal MLMC estimator can be achieved. For

wo benchmarking problems, we utilized a nested and geometric

ierarchy of grids. This is not a necessary criterium and a valid

LMC estimator can be constructed on any hierarchy that consists

f levels with increasing cost and accuracy. A more sophisticated

pproach to obtain finer levels in the MLMC hierarchy can be based

n adaptively refining the mesh in regions where a large numerical

rror is observed. We would like to point out that there is a neg-

igible difference in terms of the computational cost between, the

EV and RRST models, but the implementation of the latter model

s more involved. Especially, obtaining a robust solver with respect

o random Reynolds stress tensors is challenging. The continuation

olver proposed in this paper is moderately successful but suffers

rom convergence issues on very fine grids as well as when the

andom tensors are sampled from high-variance parameter sets. 
This article presented the MLMC method as an efficient uncer-

ainty propagation tool without taking into account any available

ata. We have shown that both the stochastic models are suffi-

iently general and can reliably bound the possible flow behav-

or. Moreover, the RRST model incorporates the maximum entropy

robability distribution that is a desirable property for a good

rior distribution. A natural extension would be the development

f multilevel variants of the Markov Chain Monte Carlo (MCMC)

ethod to obtain a data-informed prediction [54] . For such algo-

ithms, the random matrix approach can act as a better prior than

he random eddy viscosity model as it circumvents the Boussinesq

pproximation. Currently, to the authors’ knowledge, no data-based

pproach exists that takes into account the uncertainty in the full

eynolds tensor field. This idea will be actively explored in the up-

oming works. 
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Appendix A 

A1:Projection of Reynolds stresses on a Barycentric triangle 

Reynolds stresses can be divided into an isotropic part 2 
3 kδi j 

and an normalized anisotropic component given by 

A i j := 

R i j 

2 k 
− δi j 

3 

, (A.1)

⇒ A i j ∈ 

{
[ −1 / 3 , 2 / 3] for i = j, 

[ −1 / 2 , 1 / 2] for i � = j, 
(A.2)

forming the entries of a symmetric and deviatoric anisotropy ten-

sor A . Utilizing the eigenvalue decomposition, the anisotropy ten-

sor A , can be expressed as 

A = V �V 

T , (A.3)

where V = [ v 1 , v 2 , v 3 ] with three mutually orthonormal

eigenvectors v i and the corresponding eigenvalue matrix

� = diag [ λ1 , λ2 , λ3 ] with λ1 + λ2 + λ3 = 0 and ordering such

that λ1 > λ2 > λ3 . 

In physical terms, quantities k , V and � represent the magni-

tude, shape and orientation of the Reynolds stress, respectively.

The state of the turbulence anisotropy can be visualized using a

barycentric triangle [52] . This requires mapping the eigenvalues to

the barycentric coordinates, C 1 c , C 2 c , C 3 c , using linear relations: 

 1 c = λ1 − λ2 , C 2 c = 2(λ2 − λ3 ) , C 3 c = 3 λ3 + 1 , 

⇒ C 1 c + C 2 c + C 3 c = 1 . (A.4)

Reynolds stress anisotropy is said to attain a limiting state when

one of these components equals 1. Therefore, C 1 c = 1 represents 1-

component turbulence, C 2 c = 1 represents 2-component turbulence

and C 3 c = 1 represents 3-component turbulence. One can express

the anisotropy states in Cartesian coordinates using a barycentric

triangle with the vertices ( x 1 c , y 1 c ), ( x 2 c , y 2 c ) and ( x 3 c , y 3 c ), corre-

sponding to the three limiting states. Now, any anisotropy tensor

can be projected into barycentric triangle via the convex combina-

tion of the three limiting states: 

x = x 1 c C 1 c + x 2 c C 2 c + x 3 c C 3 c , (A.5)

y = y 1 c C 1 c + y 2 c C 2 c + y 3 c C 3 c . (A.6)

This transformation enables us to analyse the states of the

Reynolds stresses generated using the random matrix approach.

These perturbed Reynolds stresses should lie on, or within, this

triangle to be physically realizable. The contours in Fig. 4 are gen-

erated by making bins of equal size inside the barycentric triangle

and plotting the normalized frequency for each bin. 

A2: Spectral generator for Gaussian random fields and covariance 

upscaling 

As the random eddy viscosity field and the components of the

random Reynolds stress tensor need to be sampled many times, a

fast sampling algorithm is necessary to obtain an efficient (ML)MC

estimator. There are a number of spectral generators available in

the literature [29–31] that exploit the efficiency of the FFT al-

gorithm to achieve fast sampling of Gaussian random fields. We
se the Fast Fourier Transform moving average (FFT-MA) technique

rom [29] . Given a covariance matrix C � computed on the mesh

 � , a standard way to sample correlated Gaussian random vectors

 � ( ω) is via a Cholesky decomposition C � = L � L 
T 
� and use z � = L � y �

here y � is a vector of i.i.d. samples from the standard normal dis-

ribution. This procedure requires a large storage as well as an ex-

ensive matrix-vector product for each sample of z � . The FFT-MA

ethod is based on a decomposition of the covariance function C

s a convolutional product of some function S and its transpose S ′ 
 S ′ (x ) = S(−x ) ). We can express this decomposition as 

 � = s � ∗ s ′ � , (A.7)

here c � , s � are vectors obtained by evaluating C and S , respec-

ively at grid points of the mesh D � . A correlated random vector z � 
an now be synthesized by using the convolution product 

 � = s � ∗ y � . (A.8)

he key idea of the FFT-MA approach is to perform the above com-

utations in the frequency domain. The first task is to extend the

ector c � to obtain a periodic signal, which is also real, positive and

ymmetric, see, for instance [30] , for details. As a result s � is also

eal, positive and symmetric and s � = s ′ � . As a convolution product

s equivalent to component-wise product in the frequency domain,

e can use 

(c � ) = F(s � ) · F(s � ) ⇒ F(s � ) = 

√ 

F(c � ) , (A.9)

here F denotes the discrete FFT and · denotes component-wise

ultiplication. Here, the component-wise square-root operation

oes not pose any problems as the power spectrum F(c � ) is real,

ositive and symmetric. Next, we express the convolution product

n (A.7) as a vector-vector product in frequency domain as 

(z � ) = F(s � ∗ y � ) = F(s � ) · F(y � ) . (A.10)

inally, the correlated random field is obtained by an inverse fast

ourier transform 

 � = F 

−1 (F(s � ) · F(y � )) . (A.11)

ote that due to the periodicity in the covariance vector c � , the

esulting random field z � is also periodic. Therefore, the part of

he vector that does not correspond to the physical domain is dis-

arded. 

One of the advantages of the FFT-MA algorithm is that the en-

ries of the normally distributed vector y � are associated with re-

pective grid points, thus, coarser grid realizations of the fine grid

aussian random field z � can be obtained by local averaging of y � .

s proposed in [44] , an upscaled version z � −1 of the fine grid ran-

om field z � can be derived by using a multi-dimensional averag-

ng of y � . For instance, in two dimensions for a cell-centred grid,

 

i, j 
� −1 

= 

1 

2 

(
y 2 i −1 , 2 j−1 

� + y 2 i −1 , 2 j 
� + y 2 i, 2 j−1 

� + y 2 i, 2 j � 

)
, (A.12)

here i, j is the cell index for the mesh D � −1 . The scaling by a

actor 2 is needed to obtain a standard normal distribution for the

veraged quantity y 
i, j 
� −1 

. The coarser random field can now be sim-

ly assembled as 

 � −1 = F 

−1 (F(s � −1 ) · F(y � −1 )) . (A.13)

s the averaging in (A.12) smooths out high frequencies, the up-

caled version z � −1 will also be slightly smoother compared to z � . 
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