79,633 research outputs found

    Stable circulation modes in a dual-core matter-wave soliton laser

    Full text link
    We consider a model of a matter-wave laser generating a periodic array of solitary-wave pulses. The system, a general version of which was recently proposed in Ref. [5], is composed of two parallel tunnel-coupled cigar-shaped traps (a reservoir and a lasing cavity), solitons being released through a valve at one edge of the cavity. We report a stable lasing mode accounted for by circulations of a narrow soliton in the cavity, which generates an array of strong pulses (with 1,000 - 10,000 atoms in each, the array's duty cycle ~ 30%) when the soliton periodically hits the valve.Comment: J. of Physics B: At. Mol. Opt. Physics, in pres

    Liquid oil painting: Free and forced convection in an enclosure with mechanical and thermal forcing

    Full text link
    A fluid dynamics video is linked to this article, which have been submitted to the Gallery of Fluid Motion as part of the 65th American Physical Society meeting of the Division of Fluid Dynamics, held in San Diego, California, USA, over 17-20 November 2012. The video serves to visualize flows generated in a rectangular enclosure that are subjected to both mechanical and thermal forcing through a common horizontal boundary. This system exhibits features consistent with either horizontal convection or lid-driven cavity flows depending on the ratio between thermal and mechanical stirring, and three different cases are visualized in the linked videos.Comment: 2 video files attached, 4 pages, 1 figure. This article is submitted accompanying a video submitted to the Gallery of Fluid Motion as part of the 65th Division of Fluid Dynamics meeting of the American Physical Society (17-20 November, San Diego, CA, USA

    A model of a dual-core matter-wave soliton laser

    Full text link
    We propose a system which can generate a periodic array of solitary-wave pulses from a finite reservoir of coherent Bose-Einstein condensate (BEC). The system is built as a set of two parallel quasi-one-dimensional traps (the reservoir proper and a pulse-generating cavity), which are linearly coupled by the tunneling of atoms. The scattering length is tuned to be negative and small in the absolute value in the cavity, and still smaller but positive in the reservoir. Additionally, a parabolic potential profile is created around the center of the cavity. Both edges of the reservoir and one edge of the cavity are impenetrable. Solitons are released through the other cavity's edge, which is semi-transparent. Two different regimes of the intrinsic operation of the laser are identified: circulations of a narrow wave-function pulse in the cavity, and oscillations of a broad standing pulse. The latter regime is stable, readily providing for the generation of an array containing up to 10,000 permanent-shape pulses. The circulation regime provides for no more than 40 cycles, and then it transforms into the oscillation mode. The dependence of the dynamical regime on parameters of the system is investigated in detail.Comment: Journal of Physics B, in pres

    Interface states and anomalous quantum oscillations in graphene hybrid structures

    Full text link
    One- and two-layer graphene have recently been shown to feature new physical phenomena such as unconventional quantum Hall effects and prospects of supporting a non-silicon technological platform using epitaxial graphene. While both one- and two-layer graphene have been studied extensively, continuous sheets of graphene possessing both parts have not yet been explored. Here we report a study of such graphene hybrid structures. In a bulk hybrid featuring two large-area one- and two-layer graphene and an interface between them, two sets of Landau levels and features related to the interface were found. In edge hybrids featuring a large two-layer graphene with narrow one-layer graphene edges, we observed an anomalous suppression in quantum oscillation amplitude due to the locking of one- and two-layer graphene Fermi energies and emergent chiral interface states. These findings demonstrate the importance of these hybrid structures whose unique interface states and related phenomena deserve further studies.Comment: 4 pages, 4 figure

    Insights into the Fallback Path of Best-Effort Hardware Transactional Memory Systems

    Get PDF
    DOI 10.1007/978-3-319-43659-3Current industry proposals for Hardware Transactional Memory (HTM) focus on best-effort solutions (BE-HTM) where hardware limits are imposed on transactions. These designs may show a significant performance degradation due to high contention scenarios and different hardware and operating system limitations that abort transactions, e.g. cache overflows, hardware and software exceptions, etc. To deal with these events and to ensure forward progress, BE-HTM systems usually provide a software fallback path to execute a lock-based version of the code. In this paper, we propose a hardware implementation of an irrevocability mechanism as an alternative to the software fallback path to gain insight into the hardware improvements that could enhance the execution of such a fallback. Our mechanism anticipates the abort that causes the transaction serialization, and stalls other transactions in the system so that transactional work loss is mini- mized. In addition, we evaluate the main software fallback path approaches and propose the use of ticket locks that hold precise information of the number of transactions waiting to enter the fallback. Thus, the separation of transactional and fallback execution can be achieved in a precise manner. The evaluation is carried out using the Simics/GEMS simulator and the complete range of STAMP transactional suite benchmarks. We obtain significant performance benefits of around twice the speedup and an abort reduction of 50% over the software fallback path for a number of benchmarks.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Metformin induces distinct bioenergetic and metabolic profiles in sensitive versus resistant high grade serous ovarian cancer and normal fallopian tube secretory epithelial cells.

    Get PDF
    Metformin is a widely used agent for the treatment of diabetes and infertility, however, it has been found to have anti-cancer effects in a variety of malignancies including high grade serous ovarian cancer (HGSC). Studies describing the mechanisms by which metformin affects HGSC are ongoing, but detailed analysis of its effect on the cellular metabolism of both HGSC cells and their precursor, normal fallopian tube secretory epithelial cells (FTSECs), is lacking. We addressed the effects of metformin and the more potent biguanide, phenformin, on HGSC cell lines and normal immortalized FTSECs. Cell proliferation assays identified that FTSECs and a subset of HGSC cell lines are relatively resistant to the anti-proliferative effects of metformin. Bioenergetic and metabolomic analyses were used to metabolically differentiate the metformin-sensitive and metformin-resistant cell lines. Bioenergetically, biguanides elicited a significant decrease in mitochondrial respiration in all HGSC cells and FTSECs. However, biguanides had a greater effect on mitochondrial respiration in metformin sensitive cells. Metabolomic analysis revealed that metformin and phenformin generally induce similar changes in metabolic profiles. Biguanide treatment led to a significant increase in NADH in FTSECs and HGSC cells. Interestingly, biguanide treatment induced changes in the levels of mitochondrial shuttle metabolites, glycerol-3-phopshate (G3P) and aspartate, specifically in HGSC cell lines and not in FTSECs. Greater alterations in G3P or aspartate levels were also found in metformin sensitive cells relative to metformin resistant cells. These data identify bioenergetic and HGSC-specific metabolic effects that correlate with metformin sensitivity and novel metabolic avenues for possible therapeutic intervention

    Symmetry-preserving Loop Regularization and Renormalization of QFTs

    Full text link
    A new symmetry-preserving loop regularization method proposed in \cite{ylw} is further investigated. It is found that its prescription can be understood by introducing a regulating distribution function to the proper-time formalism of irreducible loop integrals. The method simulates in many interesting features to the momentum cutoff, Pauli-Villars and dimensional regularization. The loop regularization method is also simple and general for the practical calculations to higher loop graphs and can be applied to both underlying and effective quantum field theories including gauge, chiral, supersymmetric and gravitational ones as the new method does not modify either the lagrangian formalism or the space-time dimension of original theory. The appearance of characteristic energy scale McM_c and sliding energy scale μs\mu_s offers a systematic way for studying the renormalization-group evolution of gauge theories in the spirit of Wilson-Kadanoff and for exploring important effects of higher dimensional interaction terms in the infrared regime.Comment: 13 pages, Revtex, extended modified version, more references adde

    Behavior of X-Ray Dust Scattering and Implications for X-Ray Afterglows of Gamma-Ray Bursts

    Full text link
    The afterglows of gamma-ray bursts (GRBs) have commonly been assumed to be due to shocks sweeping up the circum-stellar medium. However, most GRBs have been found in dense star-forming regions where a significant fraction of the prompt X-ray emission can be scattered by dust grains. Here we revisit the behavior of dust scattering of X-rays in GRBs. We find that the features of some X-ray afterglows from minutes to days after the gamma-ray triggers are consistent with the scattering of prompt X-ray emission from GRBs off host dust grains. This implies that some of the observed X-ray afterglows (especially those without sharp rising and decaying flares) could be understood with a dust-scattering--driven emission model.Comment: ApJ, in pres

    1+1 Dimensional Compactifications of String Theory

    Full text link
    We argue that stable, maximally symmetric compactifications of string theory to 1+1 dimensions are in conflict with holography. In particular, the finite horizon entropies of the Rindler wedge in 1+1 dimensional Minkowski and anti de Sitter space, and of the de Sitter horizon in any dimension, are inconsistent with the symmetries of these spaces. The argument parallels one made recently by the same authors, in which we demonstrated the incompatibility of the finiteness of the entropy and the symmetries of de Sitter space in any dimension. If the horizon entropy is either infinite or zero the conflict is resolved.Comment: 11 pages, 2 figures v2: added discussion of AdS_2 and comment
    • …
    corecore