70,835 research outputs found

    Analysis of broadband microwave conductivity and permittivity measurements of semiconducting materials

    Full text link
    We perform broadband phase sensitive measurements of the reflection coefficient from 45 MHz up to 20 GHz employing a vector network analyzer with a 2.4 mm coaxial sensor which is terminated by the sample under test. While the material parameters (conductivity and permittivity) can be easily extracted from the obtained impedance data if the sample is metallic, no direct solution is possible if the material under investigation is an insulator. Focusing on doped semiconductors with largely varying conductivity, here we present a closed calibration and evaluation procedure for frequencies up to 5 GHz, based on the rigorous solution for the electromagnetic field distribution inside the sample combined with the variational principle; basically no limiting assumptions are necessary. A simple static model based on the electric current distribution proves to yield the same frequency dependence of the complex conductivity up to 1 GHz. After a critical discussion we apply the developed method to the hopping transport in Si:P at temperature down to 1 K.Comment: 9 pages, 10 figures, accepted for publication in the Journal of Applied Physic

    Engineering Time-Reversal Invariant Topological Insulators With Ultra-Cold Atoms

    Get PDF
    Topological insulators are a broad class of unconventional materials that are insulating in the interior but conduct along the edges. This edge transport is topologically protected and dissipationless. Until recently, all existing topological insulators, known as quantum Hall states, violated time-reversal symmetry. However, the discovery of the quantum spin Hall effect demonstrated the existence of novel topological states not rooted in time-reversal violations. Here, we lay out an experiment to realize time-reversal topological insulators in ultra-cold atomic gases subjected to synthetic gauge fields in the near-field of an atom-chip. In particular, we introduce a feasible scheme to engineer sharp boundaries where the "edge states" are localized. Besides, this multi-band system has a large parameter space exhibiting a variety of quantum phase transitions between topological and normal insulating phases. Due to their unprecedented controllability, cold-atom systems are ideally suited to realize topological states of matter and drive the development of topological quantum computing.Comment: 11 pages, 6 figure

    Resonant Impurity States in the D-Density-Wave Phase

    Full text link
    We study the electronic structure near impurities in the d-density-wave (DDW) state, a possible candidate phase for the pseudo-gap region of the high-temperature superconductors. We show that the local DOS near a non-magnetic impurity in the DDW state is {\it qualitatively} different from that in a superconductor with dx2−y2d_{x^2-y^2}-symmetry. Since this result is a robust feature of the DDW phase, it can help to identify the nature of the two different phases recently observed by scanning tunneling microscopy experiments in the superconducting state of underdoped Bi-2212 compounds

    Detection of finite frequency current moments with a dissipative resonant circuit

    Full text link
    We consider the measurement of higher current moments with a dissipative resonant circuit, which is coupled inductively to a mesoscopic device in the coherent regime. Information about the higher current moments is coded in the histograms of the charge on the capacitor plates of the resonant circuit. Dissipation is included via the Caldeira-Leggett model, and it is essential to include it in order for the charge fluctuations (or the measured noise) to remain finite. We identify which combination of current correlators enter the measurement of the third moment. The latter remains stable for zero damping. Results are illustrated briefly for a quantum point contact

    Critical Lines and Massive Phases in Quantum Spin Ladders with Dimerization

    Get PDF
    We determine the existence of critical lines in dimerized quantum spin ladders in their phase diagram of coupling constants using the finite-size DMRG algorithm. We consider both staggered and columnar dimerization patterns, and antiferromagnetic and ferromagnetic inter-leg couplings. The existence of critical phases depends on the precise combination of these patterns. The nature of the massive phases separating the critical lines are characterized with generalized string order parameters that determine their valence bond solid (VBS) content.Comment: 9 pages 10 figure

    Non-abelian D=11 Supermembrane

    Full text link
    We obtain a U(M) action for supermembranes with central charges in the Light Cone Gauge (LCG). The theory realizes all of the symmetries and constraints of the supermembrane together with the invariance under a U(M) gauge group with M arbitrary. The worldvolume action has (LCG) N=8 supersymmetry and it corresponds to M parallel supermembranes minimally immersed on the target M9xT2 (MIM2). In order to ensure the invariance under the symmetries and to close the corresponding algebra, a star-product determined by the central charge condition is introduced. It is constructed with a nonconstant symplectic two-form where curvature terms are also present. The theory is in the strongly coupled gauge-gravity regime. At low energies, the theory enters in a decoupling limit and it is described by an ordinary N=8 SYM in the IR phase for any number of M2-branes.Comment: Contribution to the Proceedings of the Dubna International SQS'09 Workshop ("Supersymmetries and Quantum Symmetries-2009", July 29 - August 3, 2009. 12pg, Late

    Coulomb gauge Gribov copies and the confining potential

    Full text link
    We study the approach, initiated by Marinari et al., to the static inter-quark potential based on Polyakov lines of finite temporal extent, evaluated in Coulomb gauge. We show that, at small spatial separations, the potential can be understood as being between two separately gauge invariant colour charges. At larger separations Gribov copies obstruct the non-perturbative identification of individually gauge invariant colour states. We demonstrate, for the first time, how gauge invariance can be maintained quite generally by averaging over Gribov copies. This allows us to extend the analysis of the Polyakov lines and the corresponding, gauge invariant quark-antiquark state to all distance scales. Using large scale lattice simulations, we show that this interpolating state possesses a good overlap with the ground state in the quark-antiquark sector and yields the full static inter-quark potential at all distances. A visual representation of the Gribov copies on the lattice is also presented.Comment: 22 pages, 9 figures, v2: minor changes, references adde
    • …
    corecore