4 research outputs found

    Structural Insights on Recalcitrance during Hydrothermal Hemicellulose Extraction from Wood

    No full text
    Hydrothermal extraction of hemicelluloses from lignocellulosic biomass for conversion to renewable materials or fuels has captured attention. The extraction is however partial and some lignin is codissolved. Herein, we investigated the role of molecular structure in the recalcitrance. Wood meal of Spruce and Birch were subjected to pressurized hydrothermal extraction at 160 °C for 2 h, which extracted 68–75% of the hemicelluloses. 2D heteronuclear single quantum coherence (HSQC) NMR, HSQC-TOCSY, and <sup>13</sup>C NMR were applied for structural studies of both extracts and residues. Subsequent to the known partial hydrolysis of native carbon-2 and carbon-3 acetates in hemicellulose, some acetylation of primary alcohols on hemicelluloses and lignin was observed. Lignin carbohydrate complexes (LCC) were detected in both the extracts and residues. In Spruce extracts, only the phenyl glycoside-type of LCC was detected. Birch extracts contained both the phenyl glycoside and benzyl ether-types. In the hydrothermal wood residues of both species, benzyl ether- and gamma (γ)-ester-LCC were present. Structural changes in lignin included decrease in aryl ether (βO4) content and increases in resinol- (ββ) and phenyl coumaran (β5) contents. On the basis of the overall analysis, the mechanisms and contribution of molecular structure to recalcitrance is discussed

    Lignin Carboxymethylation: Probing Fundamental Insights into Structure–Reactivity Relationships

    No full text
    Amidst declining fossil-based resources and environmental challenges, the focus on biobased materials has intensified. Carboxymethylation is one way to introduce reactive functionality to enhance the reactivity of lignin for a specified application. This research investigates the carboxymethylation of four lignin sources: eucalyptus kraft lignin, spruce kraft lignin, birch cyclic extracted organosolv lignin, and spruce cyclic extracted organosolv lignin. Our aim is to elucidate the role of the lignin structure in its reactivity. Using the advanced analytical techniques NMR spectroscopy, Fourier transform infrared spectroscopy, density functional theory, and size-exclusion chromatography, we provide a comprehensive characterization of the modified lignin. The findings offer valuable insights into how the chemical and physical properties of molecular lignin affect the selectivity and efficiency of the carboxymethylation reaction. These fundamental findings hold great potential for guiding considerations on the selection of lignin sources for specific applications based on their molecular properties

    Lignin Structure and Reactivity in the Organosolv Process Studied by NMR Spectroscopy, Mass Spectrometry, and Density Functional Theory

    No full text
    There is need for well-defined lignin macromolecules for research related to their use in biomaterial and biochemical applications. Lignin biorefining efforts are therefore under investigation to meet these needs. The detailed knowledge of the molecular structure of the native lignin and of the biorefinery lignins is essential for understanding the extraction mechanisms as well as chemical properties of the molecules. The objective of this work was to study the reactivity of lignin during a cyclic organosolv extraction process adopting physical protection strategies. As references, synthetic lignins obtained by mimicking the chemistry of lignin polymerization were used. State-of-the-art nuclear magnetic resonance (NMR) analysis, a powerful tool for the elucidation of lignin inter-unit linkages and functionalities, is complemented with matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry (MALDI-TOF MS), to gain insights into linkage sequences and structural populations. The study unraveled interesting fundamental aspects on lignin polymerization processes, such as identifications of molecular populations with high degrees of structural homogeneity and the emergence of branching points in lignin structure. Furthermore, a previously proposed intramolecular condensation reaction is substantiated and new insights into the selectivity of this reaction are introduced and supported by density functional theory (DFT) calculations, where the important role of intramolecular π–π stacking is emphasized. The combined NMR and MALDI-TOF MS analytical approach, together with computational modeling, is important for deeper fundamental lignin studies and will be further exploited

    Renewable Thiol–Ene Thermosets Based on Refined and Selectively Allylated Industrial Lignin

    No full text
    Aromatic material constituents derived from renewable resources are attractive for new biobased polymer systems. Lignin, derived from lignocellulosic biomass, is the most abundant natural source of such structures. Technical lignins are, however, heterogeneous in both structure and polydispersity and require a refining to obtain a more reproducible material. In this paper the ethanol-soluble fraction of Lignoboost Kraft lignin is selectively allylated using allyl chloride by means of a mild and industrially scalable procedure. Analysis using <sup>1</sup>H-, <sup>31</sup>P-, and 2D HSQC NMR give a detailed structural description of lignin, providing evidence of its functionalization and that the suggested procedure is selective toward phenols with a conversion of at least 95%. The selectively modified lignin is subsequently cross-linked using thermally induced thiol–ene chemistry. FT-IR is utilized to confirm the cross-linking reaction, and DSC measurements determined the <i>T</i><sub>g</sub> of the thermosets to be 45–65 °C depending on reactive group stoichiometry. The potential of lignin as a constituent in a thermoset application is demonstrated and discussed
    corecore