2,526 research outputs found

    Using hybrid topological-spin qubit systems for two-qubit-spin gates

    Full text link
    We investigate a hybrid quantum system involving spin qubits, based on the spins of electrons confined in quantum dots, and topological qubits, based on Majorana fermions. In such a system, gated control of the charge on the quantum dots allows transfer of quantum information between the spin and topological qubits, and the topological system can be used to facilitate transfer of spin qubits between spatially separated quantum dots and to initialize entangled spin-qubit pairs. Here, we show that the coupling to the topological system also makes it possible to perform entangling two-qubit gates on spatially separated spin qubits. The two-qubit gates are based on a combination of topologically protected braiding operations, gate-controlled charge transfer between the dots and edge Majorana modes, and measurements of the state of the topological qubits.Comment: 7 pages, 1 figure. Published versio

    Quantum information transfer between topological and spin qubit systems

    Full text link
    We propose a method to coherently transfer quantum information, and to create entanglement, between topological qubits and conventional spin qubits. Our suggestion uses gated control to transfer an electron (spin qubit) between a quantum dot and edge Majorana modes in adjacent topological superconductors. Because of the spin polarization of the Majorana modes, the electron transfer translates spin superposition states into superposition states of the Majorana system, and vice versa. Furthermore, we show how a topological superconductor can be used to facilitate long-distance quantum information transfer and entanglement between spatially separated spin qubits.Comment: 4+ pages, 2 figures, published versio

    Coupling spin qubits via superconductors

    Full text link
    We show how superconductors can be used to couple, initialize, and read out spatially separated spin qubits. When two single-electron quantum dots are tunnel coupled to the same superconductor, the singlet component of the two-electron state partially leaks into the superconductor via crossed Andreev reflection. This induces a gate-controlled singlet-triplet splitting which, with an appropriate superconductor geometry, remains large for dot separations within the superconducting coherence length. Furthermore, we show that when two double-dot singlet-triplet qubits are tunnel coupled to a superconductor with finite charging energy, crossed Andreev reflection enables a strong two-qubit coupling over distances much larger than the coherence length.Comment: 5 pages, 3 figures. Published versio

    Scheme to measure Majorana fermion lifetimes using a quantum dot

    Full text link
    We propose a setup to measure the lifetime of the parity of a pair of Majorana bound states. The proposed experiment has one edge Majorana state tunnel coupled to a quantum dot, which in turn is coupled to a metallic electrode. When the Majorana Fermions overlap, even a small relaxation rate qualitatively changes the non-linear transport spectrum, and for strong overlap the lifetime can be read off directly from the height of a current peak. This is important for the usage of Majorana Fermions as a platform for topological quantum computing, where the parity relaxation is a limiting factor.Comment: 5 pages, 3 figures. Published versio

    Parity qubits and poor man's Majorana bound states in double quantum dots

    Full text link
    We study a double quantum dot connected via a common superconducting lead and show that this system can be tuned to host one Majorana bound state (MBS) on each dot. We call them "poor man's Majorana bound states" since they are not topologically protected, but otherwise share the properties of MBS formed in topological superconductors. We describe the conditions for the existence of the two spatially separated MBS, which include breaking of spin degeneracy in the two dots, with the spins polarized in different directions. Therefore, we propose to use a magnetic field configuration where the field directions on the two dot form an angle. By control of this angle the cross Andreev reflection and the tunnel amplitudes can be tuned to be approximately equal, which is a requirement for the formation of the MBS. We show that the fermionic state encoded in the two Majoranas constitutes a parity qubit, which is non-local and can only be measured by probing both dots simultaneously. Using a many-particle basis for the MBS, we discuss the role of interactions and show that inter-dot interactions always lift the degeneracy. We also show how the MBS can be probed by transport measurements and discuss how the combination of several such double dot systems allows for entanglement of parity qubits and measurement of their dephasing times.Comment: 7 pages, 3 figures. Published versio

    Generation of gravitational waves during early structure formation between cosmic inflation and reheating

    Full text link
    In the pre-reheating era, following cosmic inflation and preceding radiation domination, the energy density may be dominated by an oscillating massive scalar condensate, such as is the case for quadratic chaotic inflation. We have found in a previous paper that during this period, a wide range of sub-Hubble scale perturbations are subject to a preheating instability, leading to the growth of density perturbations ultimately collapsing to form non-linear structures. We compute here the gravitational wave signal due to these structures in the linear limit and present estimates for emission in the non-linear limit due to various effects: the collapse of halos, the tidal interactions, the evaporation during the conversion of the inflaton condensate into radiation and finally the ensuing turbulent cascades. The gravitational wave signal could be rather large and potentially testable by future detectors.Comment: 11 pages, 3 figure

    Auxiliary Hamiltonian representation of the nonequilibrium Dyson equation

    Full text link
    The nonequilibrium Dyson (or Kadanoff-Baym) equation, which is an equation of motion with long-range memory kernel for real-time Green functions, underlies many numerical approaches based on the Keldysh formalism. In this paper we map the problem of solving the Dyson equation in real-time onto a noninteracting auxiliary Hamiltonian with additional bath degrees of freedom. The solution of the auxiliary model does not require the evaluation of a memory kernel and can thus be implemented in a very memory efficient way. The mapping is derived for a self-energy which is local in space and is thus directly applicable within nonequilibrium dynamical mean-field theory (DMFT). We apply the method to study the interaction quench in the Hubbard model for an optical lattice with a narrow confinement, using inhomogeneous DMFT in combination with second-order weak-coupling perturbation theory. We find that, although the quench excites pronounced density oscillations, signatures of the two-stage relaxation similar to the homogeneous system can be observed by looking at the time-dependent occupations of natural orbitals.Comment: 14 pages, 11 figure

    Role of impact ionization in the thermalization of photo-excited Mott insulators

    Full text link
    We study the influence of the pulse energy and fluence on the thermalization of photo-doped Mott insulators. If the Mott gap is smaller than the width of the Hubbard bands, the kinetic energy of individual carriers can be large enough to produce doublon-hole pairs via a process analogous to impact ionization. The thermalization dynamics, which involves an adjustment of the doublon and hole densities, thus changes as a function of the energy of the photo-doped carriers and exhibits two timescales -- a fast relaxation related to impact ionization and a slower timescale associated with higher-order scattering processes. The slow dynamics depends more strongly on the gap size and the photo-doping concentration

    Coupling and braiding Majorana bound states in networks defined in proximitized two-dimensional electron gases

    Full text link
    Two-dimensional electron gases with strong spin-orbit coupling covered by a superconducting layer offer a flexible and potentially scalable platform for Majorana networks. We predict Majorana bound states (MBSs) to appear for experimentally achievable parameters and realistic gate potentials in two designs: either underneath a narrow stripe of a superconducting layer (S-stripes) or where a narrow stripe has been removed from a uniform layer (N-stripes). The coupling of the MBSs can be tuned for both types in a wide range (10 μ\mueV) using gates placed adjacent to the stripes. For both types, we numerically compute the local density of states for two parallel Majorana-stripe ends as well as Majorana trijunctions formed in a tuning-fork geometry. The MBS coupling between parallel Majorana stripes can be suppressed below 1 neV for potential barriers in the meV range for separations of about 200 nm. We further show that the MBS couplings in a trijunction can be gate-controlled in a range similar to the intra-stripe coupling while maintaining a sizable gap to the excited states (tens of μ\mueV). Altogether, this suggests that braiding can carried out on a time scale of 10-100 ns

    Distinguishing Majorana bound states from localized Andreev bound states by interferometry

    Full text link
    Experimental evidence for Majorana bound states (MBSs) is so far mainly based on the robustness of a zero-bias conductance peak. However, similar features can also arise due to Andreev bound states (ABSs) localized at the end of an island. We show that these two scenarios can be distinguished by an interferometry experiment based on embedding a Coulomb-blockaded island into an Aharonov-Bohm ring. For two ABSs, when the ground state is nearly degenerate, cotunneling can change the state of the island and interference is suppressed. By contrast, for two MBSs the ground state is nondegenerate and cotunneling has to preserve the island state, which leads to h/eh / e-periodic conductance oscillations with magnetic flux. Such interference setups can be realized with semiconducting nanowires or two-dimensional electron gases with proximity-induced superconductivity and may also be a useful spectroscopic tool for parity-flip mechanisms
    corecore