8 research outputs found

    Towards the prevention of acute lung injury: a population based cohort study protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acute lung injury (ALI) is an example of a critical care syndrome with limited treatment options once the condition is fully established. Despite improved understanding of pathophysiology of ALI, the clinical impact has been limited to improvements in supportive treatment. On the other hand, little has been done on the prevention of ALI. Olmsted County, MN, geographically isolated from other urban areas offers the opportunity to study clinical pathogenesis of ALI in a search for potential prevention targets.</p> <p>Methods/Design</p> <p>In this population-based observational cohort study, the investigators identify patients at high risk of ALI using the prediction model applied within the first six hours of hospital admission. Using a validated system-wide electronic surveillance, Olmsted County patients at risk are followed until ALI, death or hospital discharge. Detailed in-hospital (second hit) exposures and meaningful short and long term outcomes (quality-adjusted survival) are compared between ALI cases and high risk controls matched by age, gender and probability of developing ALI. Time sensitive biospecimens are collected for collaborative research studies. Nested case control comparison of 500 patients who developed ALI with 500 matched controls will provide an adequate power to determine significant differences in common hospital exposures and outcomes between the two groups.</p> <p>Discussion</p> <p>This population-based observational cohort study will identify patients at high risk early in the course of disease, the burden of ALI in the community, and the potential targets for future prevention trials.</p

    Prevention and Clinical Management of Cardiovascular Damage Induced by Anticancer Drugs: Need gor Early Biomarkers snd Cardio- snd Vasculo-Protection in Personalized Therapy

    No full text
    The use of chemotherapy has largely improved the prognosis of cancer patients in the past two decades. However, the advent of more effective anticancer therapies has led to a higher incidence of cardiovascular toxicity that shows an increased incidence and represents a significant determinant of quality of life and mortality during ongoing treatment and in long-term survivors of cancer. In this setting, the primary objective for cardiologists and oncologists is the early identification of patients at high risk for developing cardiovascular toxicity and the identification of the cardiovascular cardiotoxicity in the earliest stages to personalize cancer therapy, arrange preventive interventions, and implement cardioprotective treatment. Recently, there is growing interest on the “omics” technologies, including genomics, transcriptomics, proteomics, and metabolomics, which allow the description of a large number of molecular features and have the potential to identify new factors that contribute to cardiac and endothelial function and how they interact. These technologies could play a pivotal role in unraveling the pathophysiology of vascular damage induced by anticancer treatment, in predicting the cardiovascular damage, and in monitoring individual responses to antineoplastic drugs. Leveraging multi-omics may better individuate the highly sensitive biomarkers of developing cardiovascular toxicity and further the goal of precision medicine
    corecore