9 research outputs found

    Dopamine-mediated striatal activity and function is enhanced in GlyRα2 knockout animals

    No full text
    Summary: The glycine receptor alpha 2 (GlyRα2) is a ligand-gated ion channel which upon activation induces a chloride conductance. Here, we investigated the role of GlyRα2 in dopamine-stimulated striatal cell activity and behavior. We show that depletion of GlyRα2 enhances dopamine-induced increases in the activity of putative dopamine D1 receptor-expressing striatal projection neurons, but does not alter midbrain dopamine neuron activity. We next show that the locomotor response to d-amphetamine is enhanced in GlyRα2 knockout animals, and that this increase correlates with c-fos expression in the dorsal striatum. 3-D modeling revealed an increase in the neuronal ensemble size in the striatum in response to D-amphetamine in GlyRα2 KO mice. Finally, we show enhanced appetitive conditioning in GlyRα2 KO animals that is likely due to increased motivation, but not changes in associative learning or hedonic response. Taken together, we show that GlyRα2 is an important regulator of dopamine-stimulated striatal activity and function

    Gigahertz photon density waves in a turbid medium: Theory and experiments

    No full text
    The predictions of the frequency-domain standard diffusion equation (SDE) model for light propagation in an infinite turbid medium diverge from the more complete [Formula Presented] approximation to the linear Boltzmann transport equation at intensity modulation frequencies greater than several hundred MHz. The [Formula Presented] approximation is based on keeping only the terms l=0 and l=1 in the expansion of the angular photon density in spherical harmonics, and the nomenclature [Formula Presented] approximation is used since the spherical harmonics of order l=1 can be written in terms of the first order Legendre polynomial, which is traditionally represented by the symbol [Formula Presented]. Frequency-domain data acquired in a quasi-infinite turbid medium at modulation frequencies ranging from 0.38 to 3.2 GHz using a superheterodyning microwave detection system were analyzed using expressions derived from both the [Formula Presented] aproximation equation and the SDE. This analysis shows that the [Formula Presented] approximation provides a more accurate description of the data over this range of modulation frequencies. Some researchers have claimed that the [Formula Presented] approximation predicts that a light pulse should propagate with an average speed of c/ √3 in a thick turbid medium. However, an examination of the Green’s function that we obtained from the frequency-domain [Formula Presented] approximation model indicates that a photon density wave phase velocity of c/ √3 is only asymptotically approached in a regime where the light intensity modulation frequency aproaches infinity. The Fourier transform of this frequency-domain result shows that in the time domain, the [Formula Presented] approximation predicts that only the leading edge of the pulse (i.e., the photons arriving at the detector at the earliest time) approaches a speed of c/√3. © 1996 The American Physical Society

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016): part one

    No full text
    corecore