1,974 research outputs found
Raman-scattering study of the InGaN alloy over the whole composition range
We present Raman-scattering measurements on InxGa1−xN over the entire composition range of the alloy. The frequencies of the A1(LO) and E2 modes are reported and show a good agreement with the one-mode behavior dispersion predicted by the modified random-element isodisplacement model. The A1(LO) mode displays a high intensity relative to the E2 mode due to resonant enhancement. For above band-gap excitation, the A1(LO) peak displays frequency shifts as a function of the excitation energy due to selective excitation of regions with different In contents, and strong multiphonon scattering up to 3LO is observed in outgoing resonance conditions
Optical spectroscopy of gan microcavities with thicknesses controlled using a plasma etch-back
The effect of an etch-back step to control the cavity length within GaN-based microcavities formed between two dielectric Bragg mirrors was investigated using photoluminescence and reflectivity. The structures are fabricated using a combination of a laser lift-off technique to separate epitaxial III-N layers from their sapphire substrates and electron-beam evaporation to deposit silica/zirconia multilayer mirrors. The photoluminescence measurements reveal cavity modes from both etched and nonetched microcavities. Similar cavity finesses are measured for 2.0 and 0.8 mm GaN cavities fabricated from the same wafer, indicating that the etchback has had little effect on the microcavity quality. For InGaN quantum well samples the etchback is shown to allow controllable reduction of the cavity length. Two etch steps of 100 nm are demonstrated with an accuracy of approximately 5%. The etchback, achieved using inductively coupled plasma and wet chemical etching, allows removal of the low-quality GaN nucleation layer, control of the cavity length, and modification of the surface resulting from lift-off
Photoluminescence of near-lattice-matched GaN/AlInN quantum wells grown on free-standing GaN and on sapphire substrates
Near-lattice-matched GaN/Al1−xInxN single quantum wells, grown using both free-standing GaN and conventional GaN-on-sapphire substrates, are studied by photoluminescence (PL) and PL excitation spectroscopies. PL spectra distinguish luminescence originating in the wells, barriers, and underlying GaN buffer layers. The spectra also reveal significant differences between structures grown simultaneously on the different substrates. The quantum well transition energy decreases as the well width increases due to the intense in-built electric fields, estimated to be 3.0±0.5 MeV/cm, that persist in strain free GaN/Al1−xInxN. Screening of these fields is studied using the excitation power dependence of the P
Use of AlInN layers in optical monitoring of growth of GaN-based structures on free-standing GaN substrates
When lattice matched to GaN, the AlInN ternary alloy has a refractive index ~7% lower than that of GaN. This characteristic can be exploited to perform in situ reflectometry during epitaxial growth of GaN-based multilayer structures on free-standing GaN substrates, by insertion of a suitable Al0.82In0.18N layer. The real-time information on growth rates and cumulative layer thicknesses thus obtainable is particularly valuable in the growth of optical resonant cavity structures. We illustrate this capability with reference to the growth of InGaN/GaN multiple quantum-well structures, including a doubly periodic structure with relatively thick GaN spacer layers between groups of wells. Al0.82In0.18N insertion layers can also assist in the fabrication of resonant cavity structures in postgrowth processing, for example, acting as sacrificial layers in a lift-off process exploiting etch selectivity between Al0.82In0.18N and GaN
(In,Ga)N/GaN microcavities with double dielectric mirrors fabricated by selective removal of an (Al,In)N sacrificial layer
Comparable microcavities with 3/2 (~240 nm) active regions containing distributed (In,Ga)N quantum wells, grown on GaN substrates and bounded by two dielectric mirrors, have been fabricated by two different routes: one using laser lift-off to process structures grown on GaN-on-sapphire templates and the second using freestanding GaN substrates, which are initially processed by mechanical thinning. Both exploit the properties of an Al0.83In0.17N layer, lattice matched to the GaN substrate and spacer layers. In both cases cavity quality factors >400 are demonstrated by measurements of the cavity-filtered room-temperature excitonic emission near 410 nm
Structural and optical properties of MOCVD AllnN epilayers
7] M.-Y. Ryu, C.Q. Chen, E. Kuokstis, J.W. Yang, G. Simin, M. Asif Khan, Appl. Phys. Lett. 80 (2002) 3730. [8] D. Xu, Y. Wang, H. Yang, L. Zheng, J. Li, L. Duan, R. Wu, Sci. China (a) 42 (1999) 517. [9] H. Hirayama, A. Kinoshita, A. Hirata, Y. Aoyagi, Phys. Stat. Sol. (a) 188 (2001) 83. [10] Y. Chen, T. Takeuchi, H. Amano, I. Akasaki, N. Yamada, Y. Kaneko, S.Y. Wang, Appl. Phys. Lett. 72 (1998) 710. [11] Ig-Hyeon Kim, Hyeong-Soo Park, Yong-Jo Park, Taeil Kim, Appl. Phys. Lett. 73 (1998) 1634. [12] K. Watanabe, J.R. Yang, S.Y. Huang, K. Inoke, J.T. Hsu, R.C. Tu, T. Yamazaki, N. Nakanishi, M. Shiojiri, Appl. Phys. Lett. 82 (2003) 718
Deformation effects in Ni nuclei produced in Si+Si at 112 MeV
Velocity and energy spectra of the light charged particles (protons and
-particles) emitted in the Si(E = 112 MeV) + Si
reaction have been measured at the Strasbourg VIVITRON Tandem facility. The
ICARE charged particle multidetector array was used to obtain exclusive spectra
of the light particles in the angular range 15 - 150 degree and to determine
the angular correlations of these particles with respect to the emission angles
of the evaporation residues. The experimental data are analysed in the
framework of the statistical model. The exclusive energy spectra of
-particles emitted from the Si + Si compound system are
generally well reproduced by Monte Carlo calculations using spin-dependent
level densities. This spin dependence approach suggests the onset of large
deformations at high spin. A re-analysis of previous -particle data
from the Si + Si compound system, using the same spin-dependent
parametrization, is also presented in the framework of a general discussion of
the occurrence of large deformation effects in the A ~ 60 mass region.Comment: 25 pages, 6 figure
Combinatorial Alexander Duality -- a Short and Elementary Proof
Let X be a simplicial complex with the ground set V. Define its Alexander
dual as a simplicial complex X* = {A \subset V: V \setminus A \notin X}. The
combinatorial Alexander duality states that the i-th reduced homology group of
X is isomorphic to the (|V|-i-3)-th reduced cohomology group of X* (over a
given commutative ring R). We give a self-contained proof.Comment: 7 pages, 2 figure; v3: the sign function was simplifie
New polymorphic microsatellite markers for California sea lions (Zalophus californianus)
Nine microsatellite loci were isolated and characterized from California sea lions (Zalophus californianus). In addition, two of five loci tested from harbour seal (Phoca vitulina) produced a single, clear band in Z. californianus, as did one out of five loci from grey seal (Halichoerus grypus) and one out of two loci from elephant seal (Mirounga sp.). No locus tested from South American fur seal (Arctocephalus australis) amplified in Z. californianus. Locus variability was assessed in California sea lions from Los Islotes rookery, Baja California Sur, Mexico. All loci were variable, with allele numbers ranging from three to 12. © 2005 Blackwell Publishing Ltd.Peer Reviewe
Quantum magneto-oscillations in a two-dimensional Fermi liquid
Quantum magneto-oscillations provide a powerfull tool for quantifying
Fermi-liquid parameters of metals. In particular, the quasiparticle effective
mass and spin susceptibility are extracted from the experiment using the
Lifshitz-Kosevich formula, derived under the assumption that the properties of
the system in a non-zero magnetic field are determined uniquely by the
zero-field Fermi-liquid state. This assumption is valid in 3D but, generally
speaking, erroneous in 2D where the Lifshitz-Kosevich formula may be applied
only if the oscillations are strongly damped by thermal smearing and disorder.
In this work, the effects of interactions and disorder on the amplitude of
magneto-oscillations in 2D are studied. It is found that the effective mass
diverges logarithmically with decreasing temperature signaling a deviation from
the Fermi-liquid behavior. It is also shown that the quasiparticle lifetime due
to inelastic interactions does not enter the oscillation amplitude, although
these interactions do renormalize the effective mass. This result provides a
generalization of the Fowler-Prange theorem formulated originally for the
electron-phonon interaction.Comment: 4 pages, 1 figur
- …
