1,240 research outputs found

    Renormalons in Effective Field Theories

    Full text link
    We investigate the high-order behavior of perturbative matching conditions in effective field theories. These series are typically badly divergent, and are not Borel summable due to infrared and ultraviolet renormalons which introduce ambiguities in defining the sum of the series. We argue that, when treated consistently, there is no physical significance to these ambiguities. Although nonperturbative matrix elements and matching conditions are in general ambiguous, the ambiguity in any physical observable is always higher order in 1/M1/M than the theory has been defined. We discuss the implications for the recently noticed infrared renormalon in the pole mass of a heavy quark. We show that a ratio of form factors in exclusive Λb\Lambda_b decays (which is related to the pole mass) is free from renormalon ambiguities regardless of the mass used as the expansion parameter of HQET. The renormalon ambiguities also cancel in inclusive heavy hadron decays. Finally, we demonstrate the cancellation of renormalons in a four-Fermi effective theory obtained by integrating out a heavy colored scalar.Comment: Minor changes mad

    The SyBil-AA real-time fMRI neurofeedback study: protocol of a single-blind randomized controlled trial in alcohol use disorder

    Get PDF
    Background: Alcohol Use Disorder is a highly prevalent mental disorder which puts a severe burden on individuals, families, and society. The treatment of Alcohol Use Disorder is challenging and novel and innovative treatment approaches are needed to expand treatment options. A promising neuroscience-based intervention method that allows targeting cortical as well as subcortical brain processes is real-time functional magnetic resonance imaging neurofeedback. However, the efficacy of this technique as an add-on treatment of Alcohol Use Disorder in a clinical setting is hitherto unclear and will be assessed in the Systems Biology of Alcohol Addiction (SyBil-AA) neurofeedback study. Methods: N = 100 patients with Alcohol Use Disorder will be randomized to 5 parallel groups in a single-blind fashion and receive real-time functional magnetic resonance imaging neurofeedback while they are presented pictures of alcoholic beverages. The groups will either downregulate the ventral striatum, upregulate the right inferior frontal gyrus, negatively modulate the connectivity between these regions, upregulate, or downregulate the auditory cortex as a control region. After receiving 3 sessions of neurofeedback training within a maximum of 2 weeks, participants will be followed up monthly for a period of 3 months and relapse rates will be assessed as the primary outcome measure. Discussion: The results of this study will provide insights into the efficacy of real-time functional magnetic resonance imaging neurofeedback training in the treatment of Alcohol Use Disorder as well as in the involved brain systems. This might help to identify predictors of successful neurofeedback treatment which could potentially be useful in developing personalized treatment approaches. Trial registration: The study was retrospectively registered in the German Clinical Trials Register (trial identifier: DRKS00010253 ; WHO Universal Trial Number (UTN): U1111–1181-4218) on May 10th, 2016

    Validity and worth in the science curriculum: learning school science outside the laboratory

    Get PDF
    It is widely acknowledged that there are problems with school science in many developed countries of the world. Such problems manifest themselves in a progressive decline in pupil enthusiasm for school science across the secondary age range and the fact that fewer students are choosing to study the physical sciences at higher levels and as careers. Responses to these developments have included proposals to reform the curriculum, pedagogy and the nature of pupil discussion in science lessons. We support such changes but argue from a consideration of the aims of science education that secondary school science is too rooted in the science laboratory; substantially greater use needs to be made of out-of-school sites for the teaching of science. Such usage should result in a school science education that is more valid and more motivating and is better at fulfilling defensible aims of school science education. Our contention is that laboratory-based school science teaching needs to be complemented by out-of-school science learning that draws on the actual world (e.g. through fieldtrips), the presented world (e.g. in science centres, botanic gardens, zoos and science museums) and the virtual worlds that are increasingly available through information and communications technologies (ICT)

    CP Phases in Correlated Production and Decay of Neutralinos in the Minimal Supersymmetric Standard Model

    Get PDF
    We investigate the associated production of neutralinos e+eχ~10χ~20e^+e^-\to\tilde{\chi}^0_1\tilde{\chi}^0_2 accompanied by the neutralino leptonic decay χ~20χ~10+\tilde{\chi}^0_2\to\tilde{\chi}^0_1 \ell^+\ell^-, taking into account initial beam polarization and production-decay spin correlations in the minimal supersymmetric standard model with general CP phases but without generational mixing in the slepton sector. The stringent constraints from the electron EDM on the CP phases are also included in the discussion. Initial beam polarizations lead to three CP--even distributions and one CP--odd distribution, which can be studied independently of the details of the neutralino decays. We find that the production cross section and the branching fractions of the leptonic neutralino decays are very sensitive to the CP phases. In addition, the production--decay spin correlations lead to several CP--even observables such as lepton invariant mass distribution, and lepton angular distribution, and one interesting T--odd (CP--odd) triple product of the initial electron momentum and two final lepton momenta, the size of which might be large enough to be measured at the high--luminosity future electron--positron collider or can play a complementary role in constraining the CP phases with the EDM constraints.Comment: Revtex, 37 pages, 12 eps figure

    PHOTOCHEMISTRY OF PHYCOBILIPROTEINS

    Get PDF
    Native PEC from the cyanobacterium, Mastigocladus laminosus, and its isolated α-subunit show photoreversibly photochromic reactions with difference-maxima around 502 and 570 nm in the spectral region of the α-84 phycoviolobilin chromophore. (b) Native PEC and its β-subunit show little if any reversible photochemistry in the 600–620 nm region, where the phycocyanobilin chromophores on the β-subunit absorb maximally, (c) Reversible photochemistry is retained in ureadenatured PEC at pH = 7.0 or pH ≤ 3. The difference maxima are shifted to 510 and 600 nm, and the amplitudes are decreased. An irreversible absorbance increase occurs around 670 nm (pH ≤ 3). (d) The amplitude of the reversible photoreaction difference spectrum is maximum in the presence of 4–5 M urea or 1 M KSCN, conditions known to dissociate phycobiliprotein aggregates into monomers. At the same time, the phycocyanobilin chromophore(s) are bleached irreversibly, (e) The amplitude becomes very small in high aggregates, e.g. in phycobilisomes. (f) In a reciprocal manner, the phototransformation of native PEC leads to a reversible shift of its aggregation equilibrium between trimer and monomer. The latter is favored by orange, the former by green light, (g) It is concluded that the phycoviolobilin chromophore of PEC is responsible for reversible photochemistry in PEC, and that there is not only an influence of aggregation state on photochemistry, but also vice versa an effect of the status of the chromophore on aggregation state. This could constitute a primary signal in the putative function as sensory pigment, either directly, or indirectly via the release of other polypeptides, via photodynamic effects, or the like

    Nonperturbative Contributions to the Inclusive Rare Decays BXsγB\to X_s\gamma and BXs+B\to X_s\ell^+\ell^-

    Full text link
    We discuss nonperturbative contributions to the inclusive rare BB decays BXsγB\to X_s\gamma and BXs+B\to X_s\ell^+\ell^-. We employ an operator product expansion and the heavy quark effective theory to compute the leading corrections to the decay rate found in the free quark decay model, which is exact in the limit mbm_b\to\infty. These corrections are of relative order 1/mb21/m_b^2, and may be parameterised in terms of two low-energy parameters. We also discuss the corrections to other observables, such as the average photon energy in BXsγB\to X_s\gamma and the lepton invariant mass spectrum in BXs+B\to X_s\ell^+\ell^-.Comment: 25 pages, 2 figures available upon request, uses harvmac.tex, SLAC-PUB-6317, UCSD/PTH 93-23, JHU-TIPAC-930020, UTPT 93-19, CMU-HEP 93-12, DOE-ER/40682-3

    On Max-Stable Processes and the Functional D-Norm

    Full text link
    We introduce a functional domain of attraction approach for stochastic processes, which is more general than the usual one based on weak convergence. The distribution function G of a continuous max-stable process on [0,1] is introduced and it is shown that G can be represented via a norm on functional space, called D-norm. This is in complete accordance with the multivariate case and leads to the definition of functional generalized Pareto distributions (GPD) W. These satisfy W=1+log(G) in their upper tails, again in complete accordance with the uni- or multivariate case. Applying this framework to copula processes we derive characterizations of the domain of attraction condition for copula processes in terms of tail equivalence with a functional GPD. \delta-neighborhoods of a functional GPD are introduced and it is shown that these are characterized by a polynomial rate of convergence of functional extremes, which is well-known in the multivariate case.Comment: 22 page

    Phases in the gaugino sector: direct reconstruction of the basic parameters and impact on the neutralino pair production

    Full text link
    We consider recovering analytically the (generally complex) parameters μ\mu, M1M_1 and M2M_2 of the gaugino and Higgsino Lagrangian, from appropriate physical input in the chargino and neutralino sectors. For given tanβ\tan\beta, we obtain very simple analytic solutions for M2M_2, μ| \mu|, Arg[μ]Arg[\mu] in the chargino sector and a twofold M1| M_1 |, Arg[M1]Arg[M_1] analytic solution in the neutralino sector, assuming two chargino, two neutralino masses, and one of the chargino mixing angles as physical input. The twofold ambiguity in the neutralino parameters reconstruction may be essentially resolved by measuring the e+eχ10χ20e^+e^- \to \chi^0_1 \chi^0_2 production cross-section at future linear collider energies, which we study explicitly with the phase dependences. Some salient features and specific properties of this complex case gaugino "spectrum inversion" are illustrated and compared with the similar inversion in the real case. In particular, our algorithms exhibit in a direct and transparent way the non-trivial theoretical correlation among the chargino and neutralino parameters, and the resulting allowed domains when only a subset of the required physical input masses and production cross-sections is known.Comment: Latex, 28 pages, 10 figure
    corecore