20 research outputs found

    Dissecting the FEAST algorithm for generalized eigenproblems

    Full text link
    We analyze the FEAST method for computing selected eigenvalues and eigenvectors of large sparse matrix pencils. After establishing the close connection between FEAST and the well-known Rayleigh-Ritz method, we identify several critical issues that influence convergence and accuracy of the solver: the choice of the starting vector space, the stopping criterion, how the inner linear systems impact the quality of the solution, and the use of FEAST for computing eigenpairs from multiple intervals. We complement the study with numerical examples, and hint at possible improvements to overcome the existing problems.Comment: 11 Pages, 5 Figures. Submitted to Journal of Computational and Applied Mathematic

    GHOST: Building blocks for high performance sparse linear algebra on heterogeneous systems

    Get PDF
    While many of the architectural details of future exascale-class high performance computer systems are still a matter of intense research, there appears to be a general consensus that they will be strongly heterogeneous, featuring "standard" as well as "accelerated" resources. Today, such resources are available as multicore processors, graphics processing units (GPUs), and other accelerators such as the Intel Xeon Phi. Any software infrastructure that claims usefulness for such environments must be able to meet their inherent challenges: massive multi-level parallelism, topology, asynchronicity, and abstraction. The "General, Hybrid, and Optimized Sparse Toolkit" (GHOST) is a collection of building blocks that targets algorithms dealing with sparse matrix representations on current and future large-scale systems. It implements the "MPI+X" paradigm, has a pure C interface, and provides hybrid-parallel numerical kernels, intelligent resource management, and truly heterogeneous parallelism for multicore CPUs, Nvidia GPUs, and the Intel Xeon Phi. We describe the details of its design with respect to the challenges posed by modern heterogeneous supercomputers and recent algorithmic developments. Implementation details which are indispensable for achieving high efficiency are pointed out and their necessity is justified by performance measurements or predictions based on performance models. The library code and several applications are available as open source. We also provide instructions on how to make use of GHOST in existing software packages, together with a case study which demonstrates the applicability and performance of GHOST as a component within a larger software stack.Comment: 32 pages, 11 figure

    ESSEX: Equipping Sparse Solvers for Exascale

    Get PDF
    The ESSEX project investigates computational issues arising at exascale for large-scale sparse eigenvalue problems and develops programming concepts and numerical methods for their solution. The project pursues a coherent co-design of all software layers where a holistic performance engineering process guides code development across the classic boundaries of application, numerical method and basic kernel library. Within ESSEX the numerical methods cover both widely applicable solvers such as classic Krylov, Jacobi-Davidson or recent FEAST methods as well as domain specific iterative schemes relevant for the ESSEX quantum physics application. This report introduces the project structure and presents selected results which demonstrate the potential impact of ESSEX for efficient sparse solvers on highly scalable heterogeneous supercomputers

    Benefits from using mixed precision computations in the ELPA-AEO and ESSEX-II eigensolver projects

    Get PDF
    We first briefly report on the status and recent achievements of the ELPA-AEO (Eigenvalue Solvers for Petaflop Applications - Algorithmic Extensions and Optimizations) and ESSEX II (Equipping Sparse Solvers for Exascale) projects. In both collaboratory efforts, scientists from the application areas, mathematicians, and computer scientists work together to develop and make available efficient highly parallel methods for the solution of eigenvalue problems. Then we focus on a topic addressed in both projects, the use of mixed precision computations to enhance efficiency. We give a more detailed description of our approaches for benefiting from either lower or higher precision in three selected contexts and of the results thus obtained

    On the parallel iterative solution of linear systems arising in the FEAST algorithm for computing inner eigenvalues

    Get PDF
    Methods for the solution of eigenvalue problems that are based on spectral projectors and contour integration have recently attracted more and more attention. Such methods require the solution of many shifted linear systems of full size. In most of the literature concerning these eigenvalue solvers, only few words are said on the solution of the linear systems, but they turn out to be very hard to solve by iterative linear solvers in practice. In this work we identify a row projection method for the solution of the inner linear systems encountered in the \feast algorithm and introduce a novel hybrid parallel and fully iterative implementation of the eigenvalue solver which exploits parallelism on several levels. We present numerical examples where graphene modeling is one of the target applications

    A 3D-Parallel Interior Eigenvalue Solver

    Get PDF
    Some applications in quantum physics require the computation of a relatively large part of the interior of the spectrum of the Hamiltonian matrix. The sparse matrices in question have a dimension of billions to trillions and on the order of 1000 eigenpairs are required. We present a purely iterative solver based on the FEAST algorithm (Polizzi '09) with a fault-tolerant and hybrid-parallel row-projection method for the linear systems that have to be solved. The subspace is distributed in both the `horizontal' and `vertical' direction, and the key operations exploit any available intra-node parallelism
    corecore