125,882 research outputs found

    Structure of Protoplanetary Discs with Magnetically-driven Winds

    Full text link
    We present a new set of analytical solutions to model the steady state structure of a protoplanetary disc with a magnetically-driven wind. Our model implements a parametrization of the stresses involved and the wind launching mechanism in terms of the plasma parameter at the disc midplane, as suggested by the results of recent, local MHD simulations. When wind mass-loss is accounted for, we find that its rate significantly reduces the disc surface density, particularly in the inner disc region. We also find that models that include wind mass-loss lead to thinner dust layers. As an astrophysical application of our models, we address the case of HL Tau, whose disc exhibits a high accretion rate and efficient dust settling at its midplane. These two observational features are not easy to reconcile with conventional accretion disc theory, where the level of turbulence needed to explain the high accretion rate would prevent a thin dust layer. Our disc model that incorporates both mass-loss and angular momentum removal by a wind is able to account for HL Tau observational constraints concerning its high accretion rate and dust layer thinness.Comment: Accepted for publication in MNRAS, 13 pages, 8 figure

    Phase behaviour of the confined lattice gas Lebwohl-Lasher model

    Full text link
    The phase behaviour of the Lebwohl-Lasher lattice gas model (one of the simplest representations of a nematogenic fluid) confined in a slab is investigated by means of extensive Monte Carlo simulations. The model is known to yield a first order gas-liquid transition in both the 2D and 3D limits, that is coupled with an orientational order-disorder transition. This latter transition happens to be first order in the 3D limit and it shares some characteristic features with the continuous defect mediated Berezinskii-Kosterlitz-Thouless transition in 2D. In this work we will analyze in detail the behaviour of this system taking full advantage of the lattice nature of the model and the particular symmetry of the interaction potential, which allows for the use of efficient cluster algorithms.Comment: 6 pages, 5 figure

    Treatment of the infrared contribution: NLO QED evolution as a pedagogic example

    Full text link
    We show that the conventional prescription used for DGLAP parton evolution at NLO has an inconsistent treatment of the contribution from the infrared (IR) region. We illustrate the problem by studying the simple example of QED evolution, treating the electron and photon as partons. The deficiency is not present in a physical approach which removes the IR divergency and allows calculation in the normal 4-dimensional space.Comment: 15 pages, 2 figures, erratum at the end of the articl

    Improving the Drell-Yan probe of small x partons at the LHC via a k_t cut

    Full text link
    We show that the observation of the Drell-Yan production of low-mass lepton-pairs (M 3) at the LHC can make a direct measurement of parton distribution functions (PDFs) in the low x region, x < 10^{-4}. We describe a procedure that greatly reduces the sensitivity of the predictions to the choice of the factorization scale and, in particular, show how, by imposing a cutoff on the transverse momentum of the lepton-pair, the data are able to probe PDFs in the important low scale, low x domain. We include the effects of the Sudakov suppression factor.Comment: 14 pages, 5 figures, version to be published in EPJC, with expanded explanatio

    Physical factorisation scheme for PDFs for non-inclusive applications

    Full text link
    We introduce the physical factorisation scheme, which is necessary to describe observables which are `not completely inclusive'. We derive the formulae for NLO DGLAP evolution in this scheme, and also for the `rotation' of the conventional MSbar PDFs into the physical representation. Unlike, the MSbar prescription, where, for example, the gluon PDF at NLO obtains an admixture of the quark-singlet PDF, and vice-versa, the physical approach does not mix parton PDFs of different types. That is, the physical approach retains the precise quantum numbers of each PDF. The NLO corrections to DGLAP evolution in the physical scheme are less than those in the MSbar case, indicating a better convergence of the perturbative series

    The LHC can probe small x PDFs; the treatment of the infrared region

    Full text link
    First, we show how to reduce the sensitivity of the NLO predictions of the Drell-Yan production of low-mass, lepton-pairs, at high rapidity, to the choice of factorization scale. In this way, observations of this process at the LHC can make direct measurements of parton distribution functions in the low x domain; x < 10^{-4}. Second, we find an inconsistency in the conventional NLO treatment of the infrared region. We illustrate the problem using the NLO coefficient function of Drell-Yan production.Comment: 5 pages, 1 figure, contribution to the Proceedings of "Diffraction2012", Puerto del Carmen, Lanzarote, Spain, Sept. 10-15th, 201
    corecore