138 research outputs found

    The angiotensin converting enzyme insertion/deletion polymorphism alters the response of muscle energy supply lines to exercise

    Get PDF
    The presence of a silencing sequence (the I-allele) in the gene for the upstream regulator of blood flow, angiotensin I-converting enzyme (ACE), is associated with superior endurance performance and its trainability. We tested in a retrospective study with 36 Caucasian men of Swiss descent whether carriers of the ACE I-allele demonstrate a modified adaptive response of energy supply lines in knee extensor muscle, and aerobic fitness, to endurance training based on 6weeks of supervised bicycle exercise or 6months of self-regulated running (p value <Bonferroni-corrected 5%). Body weight related maximal oxygen uptake and capillary density in vastus lateralis muscle before training were 20 and 23% lower, respectively, in carriers of the I-allele. Bicycle (n=16) but not running type endurance training (n=19) increased the volume content of subsarcolemmal mitochondria (2.5-fold) and intramyocellular lipid (2.1-fold). This was specifically amplified in I-allele carriers after 6weeks of bicycle exercise. The enhanced adjustment in myocellular organelles of aerobic metabolism with bicycle training corresponded to ACE I-allele dependent upregulation of 23 muscle transcripts during recovery from the bicycle stimulus and with training. The majority of affected transcripts were associated with glucose (i.e. ALDOC, Glut2, LDHC) and lipid metabolism (i.e. ACADL, CPTI, CPTII, LIPE, LPL, FATP, CD36/FAT); all demonstrating an enhanced magnitude of change in carriers of the ACE I-allele. Our observations suggest that local improvements in mitochondrial metabolism, through a novel expression pathway, contribute to the varying trainability in endurance performance between subjects with genetically modified expression of the regulator of vascular tone, AC

    Association of Gene Variants for Mechanical and Metabolic Muscle Quality with Cardiorespiratory and Muscular Variables Related to Performance in Skiing Athletes

    Full text link
    BACKGROUND Skiing is a popular outdoor sport posing different requirements on musculoskeletal and cardiorespiratory function to excel in competition. The extent to which genotypic features contribute to the development of performance with years of ski-specific training remains to be elucidated. We therefore tested whether prominent polymorphisms in genes for angiotensin converting enzyme (ACE-I/D, rs1799752), tenascin-C (TNC, rs2104772), actinin-3 (ACTN3, rs1815739) and PTK2 (rs7460 and rs7843014) are associated with the differentiation of cellular hallmarks of muscle metabolism and contraction in high level skiers. MATERIAL & METHODS Forty-three skiers of a world-leading national ski team performed exhaustive cardiopulmonary exercise testing as well as isokinetic strength testing for single contractions, whereby 230 cardiopulmonary measurements were performed in the period from 2015-2018. A total of 168 and 62 data measurements were from the Alpine and Nordic skiing squads, respectively. Ninety-five and one hundred thirty-five measurements, respectively, were from male and female athletes. The average (±SD) age was 21.5 ± 3.0 years, height 174.0 ± 8.7 cm, and weight 71.0 ± 10.9 kg for the analysed skiers. Furthermore, all skiers were analysed concerning their genotype ACE-I/D, Tenascin C, ACTN3, PTK2. RESULTS The genotype distribution deviated from Hardy-Weinberg equilibrium for the ACTN3 genotype, where rs1815739-TT genotypes (corresponding to the nonsense mutation) were overrepresented in world-class skiers, indicating a slow muscle fibre phenotype. Furthermore, the heterozygous rs2104772-AT genotypes of TNC also demonstrated the best scaled peak power output values during ramp exercise to exhaustion. The highest values under maximum performance for heart rate were associated with the rs1799752-II and rs1815739-CC genotypes. The lowest values for peak power of single contractions were achieved for rs1815739-CC, rs1799752-II and rs7843014-CT genotypes. The skiing discipline demonstrated a main influence on cardiorespiratory parameters but did not further interact with genotype-associated variability in performance. DISCUSSION Classically, it is pointed out that muscles of, for example, alpine skiers do not possess a distinct fibre type composition, but that skiers tend to have a preponderance of slow-twitch fibres. Consequently, our findings of an overrepresentation of ACTN3-TT genotypes in a highly selective sample of elite world class skiers support the potential superiority of a slow fibre type distribution. CONCLUSIONS We suggest that one competitive advantage that results from a slow, typically fatigue-resistant fibre type distribution might be that performance during intense training days is better preserved, whereby simply a higher technical training volume can be performed, yielding to a competitive advantage

    Endurance training modulates the muscular transcriptome response to acute exercise

    Get PDF
    We hypothesized that in untrained individuals (n=6) a single bout of ergometer endurance exercise provokes a concerted response of muscle transcripts towards a slow-oxidative muscle phenotype over a 24-h period. We further hypothesized this response during recovery to be attenuated after six weeks of endurance training. We monitored the expression profile of 220 selected transcripts in muscle biopsies before as well as 1, 8, and 24 h after a 30-min near-maximal bout of exercise. The generalized gene response of untrained vastus lateralis muscle peaked after 8h of recovery (P=0.001). It involved multiple transcripts of oxidative metabolism and glycolysis. Angiogenic and cell regulatory transcripts were transiently reduced after 1h independent of the training state. In the trained state, the induction of most transcripts 8h after exercise was less pronounced despite a moderately higher relative exercise intensity, partially because of increased steady-state mRNA concentration, and the level of metabolic and extracellular RNAs was reduced during recovery from exercise. Our data suggest that the general response of the transcriptome for regulatory and metabolic processes is different in the trained state. Thus, the response is specifically modified with repeated bouts of endurance exercise during which muscle adjustments are establishe

    Coping with cyclic oxygen availability: evolutionary aspects

    Get PDF
    Both the gradual rise in atmospheric oxygen over the Proterozoic Eon as well as episodic fluctuations in oxygen over several million-year time spans during the Phanerozoic Era, have arguably exerted strong selective forces on cellular and organismic respiratory specialization and evolution. The rise in atmospheric oxygen, some 2 billion years after the origin of life, dramatically altered cell biology and set the stage for the appearance of multicelluar life forms in the Vendian (Ediacaran) Period of the Neoproterozoic Era. Over much of the Paleozoic, the level of oxygen in the atmosphere was near the present atmospheric level (21%). In the Late Paleozoic, however, there were extended times during which the level of atmospheric oxygen was either markedly lower or markedly higher than 21%. That these Paleozoic shifts in atmospheric oxygen affected the biota is suggested by the correlations between: (1) Reduced oxygen and the occurrences of extinctions, a lowered biodiversity and shifts in phyletic succession, and (2) During hyperoxia, the corresponding occurrence of phenomena such as arthropod gigantism, the origin of insect flight, and the evolution of vertebrate terrestriality. Basic similarities in features of adaptation to hyopoxia, manifest in living organisms at levels ranging from genetic and cellular to physiological and behavioral, suggest the common and early origin of a suite of adaptive mechanisms responsive to fluctuations in ambient oxygen. Comparative integrative approaches addressing the molecular bases of phenotypic adjustments to cyclic oxygen fluctuation provide broad insight into the incremental steps leading to the early evolution of homeostatic respiratory mechanisms and to the specialization of organismic respiratory functio

    Instream Measures in einer alpinen Schwallstrecke – eine erste Bilanz von der Hasliaare

    Get PDF
    In der Hasliaare in Innertkirchen wurden im Winter 2014/15 auf einer 300 m langen Flussstrecke fischökologische Aufwertungsmassnahmen in Form von Instream Measures (direkt im Fliessgewässer, innerhalb der Dämme) umgesetzt. Aus ökologischer Sicht lag der Hauptfokus auf dem Schaffen von Habitaten für Jungfischstadien der heimischen Forelle (Salmo trutta), da diese in der mit Buhnen kanalisierten Strecke bei Abflüssen grösser als 20 m³/s fehlen. In der Planungsphase mussten erstens die dynamischen Anforderungen eines Gebirgsflusses berücksichtigt werden. Zweitens musste bei der ökologischen Aufwertung das Schwall/ Sunk-Abflussregime beachtet werden, drittens sollte der Aufwand in einem akzeptablen Verhältnis zum ökologischen Mehrwert stehen und nicht zuletzt mussten die Ansprüche von vielen verschiedenen Akteuren berücksichtigt werden. Als Massnahmen wurde eine Kombination aus Belebtsteingruppen, Wurzelstöcken, Fischunterständen und abgeknickten Buhnen realisiert. Im Sommer und Herbst 2015 erfolgte eine erste Erfolgskontrolle, bei der die fischökologischen Verbesserungen aufgezeigt werden konnten

    Post-translational dysregulation of glucose uptake during exhaustive cycling exercise in vastus laterals muscle of healthy homozygous carriers of the ACE deletion allele

    Get PDF
    Homozygous carriers of the deletion allele in the gene for angiotensin-converting enzyme (ACE-DD) demonstrate an elevated risk to develop inactivity-related type II diabetes and show an overshoot of blood glucose concentration with enduring exercise compared to insertion allele carriers. We hypothesized that ACE-DD genotypes exhibit a perturbed activity of signaling processes governing capillary-dependent glucose uptake in vastus lateralis muscle during exhaustive cycling exercise, which is associated with the aerobic fitness state. 27 healthy, male white Caucasian subjects (26.8 ± 1.1 years; BMI 23.6 +/- 0.6 kg m-2) were characterized for their aerobic fitness based on a threshold of 50 ml O2 min-1 kg-1 and the ACE-I/D genotype. Subjects completed a session of exhaustive one-legged exercise in the fasted state under concomitant measurement of cardiorespiratory function. Capillary blood and biopsies were collected before, and ½ and 8 h after exercise to quantify glucose and lipid metabolism-related compounds (lipoproteins, total cholesterol, ketones) in blood, the phosphorylation of 45 signaling proteins, muscle glycogen and capillaries. Effects of aerobic fitness, ACE-I/D genotype, and exercise were assessed with analysis of variance (ANOVA) under the hypothesis of a dominant effect of the insertion allele. Exertion with one-legged exercise manifested in a reduction of glycogen concentration ½ h after exercise (-0.046 mg glycogen mg-1 protein). Blood glucose concentration rose immediately after exercise in association with the ACE-I/D genotype (ACE-DD: +26%, ACE-ID/II: +6%) and independent of the fitness state (p = 0.452). Variability in total cholesterol was associated with exercise and fitness. In fit subjects, the phosphorylation levels of glucose uptake-regulating kinases [AKT-pT308 (+156%), SRC-pY419, p38α-pT180/T182, HCK-pY411], as well as cytokine/angiotensin 1-7 signaling factors [(STAT5A-pY694, STAT5B-pY699, FYN-pY420, EGFR-pY1086] were higher in angiotensin converting enzyme I-allele carriers than ACE-DD genotypes after exercise. Conversely, the AKT-S473 phosphorylation level (+117%) and angiotensin 2's blood concentration (+191%) were higher in ACE-DD genotypes. AKT-S473 phosphorylation levels post-exercise correlated to anatomical parameters of muscle performance and metabolic parameters (p 0.70). The observations identify reciprocal alterations of S473 and T308 phosphorylation of AKT as gatekeeper of a post-translational dysregulation of transcapillary glucose uptake in ACE-DD genotypes which may be targeted in personalized approaches to mitigate type II diabete

    Vor den Toren von Vindonissa. Wohnen und Arbeiten in einem Handwerkerquartier in den canabae des Legionslagers (Windisch Zivilsiedlung West 2006 – 2008)

    Get PDF
    Erstmals erlaubt die Teilauswertung einer grossflächigen Ausgrabung einen vertieften Einblick in Entwicklung und Struktur der canabae legionis von Vindonissa. Im Westen des Lagers wurde um 30/40 n. Chr. ein römisches Gräberfeld aufgehoben, das Gelände wird neu parzelliert und zügig überbaut. Ein Grossbrand um 70 n. Chr zerstört das gesamte Quartier. Die Gebäude werden kurz nach 106 n. Chr. verlassen – annähernd gleichzeitig mit der Ankunft der XI. Legion in ihrem neuen Lager in Durostorum. Die Bewohner sind Handwerker – etwa Schmiede und Gerber. Sie dürften vorwiegend für das Lager produziert haben. Die von Legionsstandorten sonst bekannte Siedlungsdualität mit canabae legionis und vicus scheint für Vindonissa nicht zu existieren – die Zivilsiedlung ist insgesamt als canabae anzusprechen

    Costamere protein expression and tissue composition of rotator cuff muscle after tendon release in sheep

    Full text link
    Previous studies suggested that degradation of contractile tissue requires cleavage of the costamere, a structural protein complex that holds sarcomeres in place. This study examined if costamere turnover is affected by a rotator cuff tear in a previously established ovine model. We found the activity of focal adhesion kinase (FAK), a main regulator of costamere turnover, was unchanged at 2 weeks but decreased by 27% 16 weeks after surgical release of the infraspinatus tendon. This was accompanied by cleavage of the costamere protein talin into a 190 kDa fragment while full length talin remained unchanged. At 2 weeks after tendon release, muscle volume decreased by 17 cm from an initial 185 cm(3) , the fatty tissue volume was halved, and the contractile tissue volume remained unchanged. After 16 weeks, the muscle volume decreased by 36 cm(3) , contractile tissue was quantitatively lost, and the fat content increased by 184%. Nandrolone administration mitigated the loss of contractile tissue by 26% and prevented fat accumulation, alterations in FAK activity, and talin cleavage. Taken together, these findings imply that muscle remodeling after tendon release occurs in two stages. The early decrease of muscle volume is associated with reduction of fat; while, the second stage is characterized by substantial loss of contractile tissue accompanied by massive fat accumulation. Regulation of costamere turnover is associated with the loss of contractile tissue and seems to be impacted by nandrolone treatment. Clinically, the costamere may represent a potential intervention target to mitigate muscle loss after a rotator cuff tear. © 2017 The Authors. Journal of Orthopaedic Research published by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society. J Orthop Res
    • …
    corecore