78 research outputs found

    Expression of MHC Class II Antigens During Xenopus Development

    Get PDF
    Larval and adult forms of the amphibian Xenopus differ in their MHC class II .expression. In tadpoles, class II epitopes can be detected by monoclonal antibodies only on B cells, macrophages (whatever their location), spleen reticulum, thymus epithelium, and the pharyngobuccal cavity. In contrast, all adult T cells express class II on their surface. The transitions in class II expression occur at metamorphosis and are accompanied by other changes. The skin is invaded by class II positive dendritic cells, and the skin glands differentiate and also express class II. The gut, which expressed class II in discrete areas of the embryonic tissue, becomes invaded with B cells, and its epithelium also becomes class II positive

    Diversity and repertoire of IgW and IgM VH families in the newborn nurse shark

    Get PDF
    BACKGROUND: Adult cartilaginous fish express three immunoglobulin (Ig) isotypes, IgM, IgNAR and IgW. Newborn nurse sharks, Ginglymostoma cirratum, produce 19S (multimeric) IgM and monomeric/dimeric IgM(1gj), a germline-joined, IgM-related VH, and very low amounts of 7S (monomeric) IgM and IgNAR proteins. Newborn IgNAR VH mRNAs are diverse in the complementarity-determining region 3 (CDR3) with non-templated nucleotide (N-region) addition, which suggests that, unlike in many other vertebrates, terminal deoxynucleotidyl transferase (TdT) expressed at birth is functional. IgW is present in the lungfish, a bony fish sharing a common ancestor with sharks 460 million years ago, implying that the IgW VH family is as old as the IgM VH family. This nurse shark study examined the IgM and IgW VH repertoire from birth through adult life, and analyzed the phylogenetic relationships of these gene families. RESULTS: IgM and IgW VH cDNA clones isolated from newborn nurse shark primary and secondary lymphoid tissues had highly diverse and unique CDR3 with N-region addition and VDJ gene rearrangement, implicating functional TdT and RAG gene activity. Despite the clear presence of N-region additions, newborn CDR3 were significantly shorter than those of adults. The IgM clones are all included in a conventional VH family that can be classified into five discrete groups, none of which is orthologous to IgM VH genes in other elasmobranchs. In addition, a novel divergent VH family was orthologous to a published monotypic VH horn shark family. IgW VH genes have diverged sufficiently to form three families. IgM and IgW VH serine codons using the potential somatic hypermutation hotspot sequence occur mainly in VH framework 1 (FR1) and CDR1. Phylogenetic analysis of cartilaginous fish and lungfish IgM and IgW demonstrated they form two major ancient gene groups; furthermore, these VH genes generally diversify (duplicate and diverge) within a species. CONCLUSION: As in ratfish, sandbar and horn sharks, most nurse shark IgM VH genes are from one family with multiple, heterogeneous loci. Their IgW VH genes have diversified, forming at least three families. The neonatal shark Ig VH CDR3 repertoire, diversified via N-region addition, is shorter than the adult VDJ junction, suggesting one means of postnatal repertoire diversification is expression of longer CDR3 junctions

    Involvement of Thyroid Hormones in the Expression of MHC class I Antigens During Ontogeny in Xenopus

    Get PDF
    The major histocompatibility complex (MHC) is a cluster of genes encoding products central to all major functions of the vertebrate immune system. Evidence for an MHC can be found in all vertebrate groups that have been examined except the jawless fishes. Expression of MHC class I and class II antigens early in ontogeny is critically important for development of T lymphocytes capable of discriminating self from nonself. Because of this essential role in T-cell development, the ontogeny of MHC expression in the South African clawed frog, Xenopus laevis, was studied. Previous studies of MHC class I expression in Xenopus laevis suggested that class I antigens are virtually absent from tadpole tissues until climax of metamorphosis. We therefore examined the possible role of thyroid hormones (TH) in the induction of class I. By flow cytometry, a small amount of class I expression was detectable on splenocytes and erythrocytes in untreated frogs at prometamorphic stages 55-58, and the amount increased significantly at the conclusion of metamorphic climax. Thus, metamorphosis is associated with increased intensity of class I expression. Neither inhibition nor acceleration of metamorphosis altered the timing of onset of class I expression. However, inhibition of metamorphosis prevented the increase in class I expression characteristic of adult cell populations. Because expression was not accelerated in TH-treated frogs or delayed in metamorphosis-inhibited frogs, it is unlikely that TH are the direct developmental cues that induce expression, although they seem to be required for the upregulation of class I expression occurring at metamorphosis. Differences in the pattern of expression in different subpopulations of cells suggest a complex pattern of regulation of expression of class I antigens during ontogeny

    Involvement of Thyroid Hormones in the Expression of MHC class I Antigens During Ontogeny in Xenopus

    Get PDF
    The major histocompatibility complex (MHC) is a cluster of genes encoding products central to all major functions of the vertebrate immune system. Evidence for an MHC can be found in all vertebrate groups that have been examined except the jawless fishes. Expression of MHC class I and class II antigens early in ontogeny is critically important for development of T lymphocytes capable of discriminating self from nonself. Because of this essential role in T-cell development, the ontogeny of MHC expression in the South African clawed frog, Xenopus laevis, was studied. Previous studies of MHC class I expression in Xenopus laevis suggested that class I antigens are virtually absent from tadpole tissues until climax of metamorphosis. We therefore examined the possible role of thyroid hormones (TH) in the induction of class I. By flow cytometry, a small amount of class I expression was detectable on splenocytes and erythrocytes in untreated frogs at prometamorphic stages 55-58, and the amount increased significantly at the conclusion of metamorphic climax. Thus, metamorphosis is associated with increased intensity of class I expression. Neither inhibition nor acceleration of metamorphosis altered the timing of onset of class I expression. However, inhibition of metamorphosis prevented the increase in class I expression characteristic of adult cell populations. Because expression was not accelerated in TH-treated frogs or delayed in metamorphosis-inhibited frogs, it is unlikely that TH are the direct developmental cues that induce expression, although they seem to be required for the upregulation of class I expression occurring at metamorphosis. Differences in the pattern of expression in different subpopulations of cells suggest a complex pattern of regulation of expression of class I antigens during ontogeny

    Construction of a nurse shark (Ginglymostoma cirratum) bacterial artificial chromosome (BAC) library and a preliminary genome survey

    Get PDF
    BACKGROUND: Sharks are members of the taxonomic class Chondrichthyes, the oldest living jawed vertebrates. Genomic studies of this group, in comparison to representative species in other vertebrate taxa, will allow us to theorize about the fundamental genetic, developmental, and functional characteristics in the common ancestor of all jawed vertebrates. AIMS: In order to obtain mapping and sequencing data for comparative genomics, we constructed a bacterial artificial chromosome (BAC) library for the nurse shark, Ginglymostoma cirratum. RESULTS: The BAC library consists of 313,344 clones with an average insert size of 144 kb, covering ~4.5 × 10(10 )bp and thus providing an 11-fold coverage of the haploid genome. BAC end sequence analyses revealed, in addition to LINEs and SINEs commonly found in other animal and plant genomes, two new groups of nurse shark-specific repetitive elements, NSRE1 and NSRE2 that seem to be major components of the nurse shark genome. Screening the library with single-copy or multi-copy gene probes showed 6–28 primary positive clones per probe of which 50–90% were true positives, demonstrating that the BAC library is representative of the different regions of the nurse shark genome. Furthermore, some BAC clones contained multiple genes, making physical mapping feasible. CONCLUSION: We have constructed a deep-coverage, high-quality, large insert, and publicly available BAC library for a cartilaginous fish. It will be very useful to the scientific community interested in shark genomic structure, comparative genomics, and functional studies. We found two new groups of repetitive elements specific to the nurse shark genome, which may contribute to the architecture and evolution of the nurse shark genome

    Immunoglobulin Heavy Chain Exclusion in the Shark

    Get PDF
    The adaptive immune system depends on specific antigen receptors, immunoglobulins (Ig) in B lymphocytes and T cell receptors (TCR) in T lymphocytes. Adaptive responses to immune challenge are based on the expression of a single species of antigen receptor per cell; and in B cells, this is mediated in part by allelic exclusion at the Ig heavy (H) chain locus. How allelic exclusion is regulated is unclear; we considered that sharks, the oldest vertebrates possessing the Ig/TCR-based immune system, would yield insights not previously approachable and reveal the primordial basis of the regulation of allelic exclusion. Sharks have an IgH locus organization consisting of 15–200 independently rearranging miniloci (VH-D1-D2-JH-Cμ), a gene organization that is considered ancestral to the tetrapod and bony fish IgH locus. We found that rearrangement takes place only within a minilocus, and the recombining gene segments are assembled simultaneously and randomly. Only one or few H chain genes were fully rearranged in each shark B cell, whereas the other loci retained their germline configuration. In contrast, most IgH were partially rearranged in every thymocyte (developing T cell) examined, but no IgH transcripts were detected. The distinction between B and T cells in their IgH configurations and transcription reveals a heretofore unsuspected chromatin state permissive for rearrangement in precursor lymphocytes, and suggests that controlled limitation of B cell lineage-specific factors mediate regulated rearrangement and allelic exclusion. This regulation may be shared by higher vertebrates in which additional mechanistic and regulatory elements have evolved with their structurally complex IgH locus

    Survey Sequencing and Comparative Analysis of the Elephant Shark (Callorhinchus milii) Genome

    Get PDF
    Owing to their phylogenetic position, cartilaginous fishes (sharks, rays, skates, and chimaeras) provide a critical reference for our understanding of vertebrate genome evolution. The relatively small genome of the elephant shark, Callorhinchus milii, a chimaera, makes it an attractive model cartilaginous fish genome for whole-genome sequencing and comparative analysis. Here, the authors describe survey sequencing (1.4× coverage) and comparative analysis of the elephant shark genome, one of the first cartilaginous fish genomes to be sequenced to this depth. Repetitive sequences, represented mainly by a novel family of short interspersed element–like and long interspersed element–like sequences, account for about 28% of the elephant shark genome. Fragments of approximately 15,000 elephant shark genes reveal specific examples of genes that have been lost differentially during the evolution of tetrapod and teleost fish lineages. Interestingly, the degree of conserved synteny and conserved sequences between the human and elephant shark genomes are higher than that between human and teleost fish genomes. Elephant shark contains putative four Hox clusters indicating that, unlike teleost fish genomes, the elephant shark genome has not experienced an additional whole-genome duplication. These findings underscore the importance of the elephant shark as a critical reference vertebrate genome for comparative analysis of the human and other vertebrate genomes. This study also demonstrates that a survey-sequencing approach can be applied productively for comparative analysis of distantly related vertebrate genomes
    corecore