1,161 research outputs found

    Topological Heat Transport and Symmetry-Protected Boson Currents

    Get PDF
    The study of non-equilibrium properties in topological systems is of practical and fundamental importance. Here, we analyze the stationary properties of a two-dimensional bosonic Hofstadter lattice coupled to two thermal baths in the quantum open-system formalism. Novel phenomena appear like chiral edge heat currents that are the out-of-equilibrium counterparts of the zero-temperature edge currents. They support a new concept of dissipative symmetry-protection, where a set of discrete symmetries protects topological heat currents, differing from the symmetry-protection devised in closed systems and zero-temperature. Remarkably, one of these currents flows opposite to the decreasing external temperature gradient. As the starting point, we consider the case of a single external reservoir already showing prominent results like thermal erasure effects and topological thermal currents. Our results are experimentally accessible with platforms like photonics systems and optical lattices.Comment: RevTeX4 file, color figure

    Symmetry-protected Topological Phases at Finite Temperature

    Get PDF
    We have applied the recently developed theory of topological Uhlmann numbers to a representative model of a topological insulator in two dimensions, the Qi-Wu-Zhang model. We have found a stable symmetry-protected topological (SPT) phase under external thermal fluctuations in two-dimensions. A complete phase diagram for this model is computed as a function of temperature and coupling constants in the original Hamiltonian. It shows the appearance of large stable phases of matter with topological properties compatible with thermal fluctuations or external noise and the existence of critical lines separating abruptly trivial phases from topological phases. These novel critical temperatures represent thermal topological phase transitions. The initial part of the paper comprises a self-contained explanation of the Uhlmann geometric phase needed to understand the topological properties that it may acquire when applied to topological insulators and superconductors.Comment: Contribution to the focus issue on "Artificial Graphene". Edited by Maciej Lewenstein, Vittorio Pellegrini, Marco Polini and Mordechai (Moti) Sege

    The dynamical equation of the spinning electron

    Full text link
    We obtain by invariance arguments the relativistic and non-relativistic invariant dynamical equations of a classical model of a spinning electron. We apply the formalism to a particular classical model which satisfies Dirac's equation when quantised. It is shown that the dynamics can be described in terms of the evolution of the point charge which satisfies a fourth order differential equation or, alternatively, as a system of second order differential equations by describing the evolution of both the center of mass and center of charge of the particle. As an application of the found dynamical equations, the Coulomb interaction between two spinning electrons is considered. We find from the classical viewpoint that these spinning electrons can form bound states under suitable initial conditions. Since the classical Coulomb interaction of two spinless point electrons does not allow for the existence of bound states, it is the spin structure that gives rise to new physical phenomena not described in the spinless case. Perhaps the paper may be interesting from the mathematical point of view but not from the point of view of physics.Comment: Latex2e, 14 pages, 5 figure

    Observation of topological Uhlmann phases with superconducting qubits

    Get PDF
    Topological insulators and superconductors at finite temperature can be characterized by the topological Uhlmann phase. However, a direct experimental measurement of this invariant has remained elusive in condensed matter systems. Here, we report a measurement of the topological Uhlmann phase for a topological insulator simulated by a system of entangled qubits in the IBM Quantum Experience platform. By making use of ancilla states, otherwise unobservable phases carrying topological information about the system become accessible, enabling the experimental determination of a complete phase diagram including environmental effects. We employ a state-independent measurement protocol which does not involve prior knowledge of the system state. The proposed measurement scheme is extensible to interacting particles and topological models with a large number of bands.Comment: RevTex4 file, color figure

    Robust nonequilibrium edge currents with and without band topology

    Full text link
    We study two-dimensional bosonic and fermionic lattice systems under nonequilibrium conditions corresponding to a sharp gradient of temperature imposed by two thermal baths. In particular, we consider a lattice model with broken time-reversal symmetry that exhibits both topologically trivial and nontrivial phases. Using a nonperturbative approach, we characterize the nonequilibrium current distribution in different parameter regimes. For both bosonic and fermionic systems weakly coupled to the reservoirs, we find chiral edge currents that are robust against defects on the boundary or in the bulk. This robustness not only originates from topological effects at zero temperature but, remarkably, also persists as a result of dissipative symmetries in regimes where band topology plays no role. Chirality of the edge currents implies that energy locally flows against the temperature gradient without any external work input. In the fermionic case, there is also a regime with topologically protected boundary currents, which nonetheless do not circulate around all system edges.Comment: 5+4 pages, 4+2 figures. Comments welcom

    Quantum dynamics in photonic crystals

    Full text link
    Employing a recently developed method that is numerically accurate within a model space simulating the real-time dynamics of few-body systems interacting with macroscopic environmental quantum fields, we analyze the full dynamics of an atomic system coupled to a continuum light-field with a gapped spectral density. This is a situation encountered, for example, in the radiation field in a photonic crystal, whose analysis has been so far been confined to limiting cases due to the lack of suitable numerical techniques. We show that both atomic population and coherence dynamics can drastically deviate from the results predicted when using the rotating wave approximation, particularly in the strong coupling regime. Experimental conditions required to observe these corrections are also discussed.Comment: 5 pages, 2 figures Updated with published versio
    corecore