4,649 research outputs found

    Shape-induced magnetic anisotropy in dilute magnetic alloys

    Full text link
    We extend the theory of the surface-induced magnetic anisotropy to mesoscopic samples with arbitrary geometry. The shape-induced anisotropy of impurity spins in small brick-shaped grains of dilute magnetic alloys is studied in detail. The surface-induced blocking of a magnetic-impurity spin is shown to be very sensitive to geometric parameters of a grain. This implies that the apparent discrepancy between the experimental data of different groups on the size dependence of the Kondo resistivity can result from different microstructure of the used samples. In order to interpret recent experimental data on the anomalous Hall effect in thin polycrystalline Fe doped Au films, we analyse the magnetisation of impurity spins as a function of the impurity position and of the grain shape.Comment: 10 pages, 6 figures, E-mail addresses: [email protected], [email protected], [email protected]

    Light Stop NLSPs at the Tevatron and LHC

    Full text link
    How light can the stop be given current experimental constraints? Can it still be lighter than the top? In this paper, we study this and related questions in the context of gauge-mediated supersymmetry breaking, where a stop NLSP decays into a W, b and gravitino. Focusing on the case of prompt decays, we simulate several existing Tevatron and LHC analyses that would be sensitive to this scenario, and find that they allow the stop to be as light as 150 GeV, mostly due to the large top production background. With more data, the existing LHC analyses will be able to push the limit up to at least 180 GeV. We hope this work will motivate more dedicated experimental searches for this simple scenario, in which, for most purposes, the only free parameters are the stop mass and lifetime.Comment: 31 pages, 11 figures; v2: added minor clarifications and reference

    On direct measurement of the W production charge asymmetry at the LHC

    Full text link
    The prospects for making a direct measurement of the W production charge asymmetry at the LHC are discussed. A modification to the method used at the Tevatron is proposed for measurements at the LHC. The expected sensitivity for such a measurement to parton distribution functions is compared to that for a measurement of the lepton charge asymmetry. The direct measurement approach is found to be less useful for placing constraints on parton distribution functions at the LHC than a measurement of the lepton charge asymmetry.Comment: 18 pages, 10 figures, v2: references and keywords updated v3: Additional paragraph discussing inclusion of W asymmetry in global fits adde

    Prompt Decays of General Neutralino NLSPs at the Tevatron

    Full text link
    Recent theoretical developments have shown that gauge mediation has a much larger parameter space of possible spectra and mixings than previously considered. Motivated by this, we explore the collider phenomenology of gauge mediation models where a general neutralino is the lightest MSSM superpartner (the NLSP), focusing on the potential reach from existing and future Tevatron searches. Promptly decaying general neutralino NLSPs can give rise to final states involving missing energy plus photons, Zs, Ws and/or Higgses. We survey the final states and determine those where the Tevatron should have the most sensitivity. We then estimate the reach of existing Tevatron searches in these final states and discuss new searches (or optimizations of existing ones) that should improve the reach. Finally we comment on the potential for discovery at the LHC.Comment: 41 pages, minor changes, added refs and discussion of previous literatur

    Two Simple W' Models for the Early LHC

    Full text link
    W' gauge bosons are good candidates for early LHC discovery. We define two reference models, one containing a W'_R and one containing a W'_L, which may serve as ``simplified models'' for presenting experimental results of W' searches at the LHC. We present the Tevatron bounds on each model and compute the constraints from precision electroweak observables. We find that indirect low-energy constraints on the W'_L are quite strong. However, for a W'_R coupling to right-handed fermions there exists a sizeable region in parameter space beyond the bounds from the Tevatron and low-energy precision measurements where even 50 inverse picobarns of integrated LHC luminosity are sufficient to discover the W'_R. The most promising final states are two leptons and two jets, or one lepton recoiling against a ``neutrino jet''. A neutrino jet is a collimated object consisting of a hard lepton and two jets arising from the decay of a highly boosted massive neutrino.Comment: 20 pages, 8 figures. v2: references adde

    Color & Weak triplet scalars, the dimuon asymmetry in BsB_s decay, the top forward-backward asymmetry, and the CDF dijet excess

    Full text link
    The new physics required to explain the anomalies recently reported by the D0 and CDF collaborations, namely the top forward-backward asymmetry (FBA), the like-sign dimuon charge asymmetry in semileptonic b decay, and the CDF dijet excess, has to feature an amount of flavor symmetry in order to satisfy the severe constrains arising from flavor violation. In this paper we show that, once baryon number conservation is imposed, color & weak triplet scalars with hypercharge Y=1/3Y=1/3 can feature the required flavor structure as a consequence of standard model gauge invariance. The color & weak triplet model can simultaneously explain the top FBA and the dimuon charge asymmetry or the dimuon charge asymmetry and the CDF dijet excess. However, the CDF dijet excess appears to be incompatible with the top FBA in the minimal framework. Our model for the dimuon asymmetry predicts the observed pattern hdhsh_d\ll h_s in the region of parameter space required to explain the top FBA, whereas our model for the CDF dijet anomaly is characterized by the absence of beyond the SM b-quark jets in the excess region. Compatibility of the color & weak triplet with the electroweak constraints is also discussed. We show that a Higgs boson mass exceeding the LEP bound is typically favored in this scenario, and that both Higgs production and decay can be significantly altered by the triplet. The most promising collider signature is found if the splitting among the components of the triplet is of weak scale magnitude.Comment: references added, published versio

    Effects of asymmetric contacts on single molecule conductances of HS(CH2)nCOOH in nano-electrical junctions

    Get PDF
    A scanning tunnelling microscope has been used to determine the conductance of single molecular wires with the configuration X-bridge-X, X-bridge-Y and Y-bridge-Y (X = thiol terminus and Y = COOH). We find that for molecular wires with mixed functional groups (X-bridge-Y) the single molecule conductance decreases with respect to the comparable symmetric molecules. These differences are confirmed by theoretical computations based on a combination of density functional theory and the non-equilibrium Green functions formalism. This study demonstrates that the apparent contact resistance, as well as being highly sensitive to the type of the anchoring group is also strongly influenced by contact-asymmetry of the single molecular junction which in this case decreases the transmission. This highlights that contact asymmetry is a significant factor to be considered when evaluating nano-electrical junctions incorporating single molecules

    LHC Predictions from a Tevatron Anomaly in the Top Quark Forward-Backward Asymmetry

    Get PDF
    We examine the implications of the recent CDF measurement of the top-quark forward-backward asymmetry, focusing on a scenario with a new color octet vector boson at 1-3 TeV. We study several models, as well as a general effective field theory, and determine the parameter space which provides the best simultaneous fit to the CDF asymmetry, the Tevatron top pair production cross section, and the exclusion regions from LHC dijet resonance and contact interaction searches. Flavor constraints on these models are more subtle and less severe than the literature indicates. We find a large region of allowed parameter space at high axigluon mass and a smaller region at low mass; we match the latter to an SU(3)xSU(3)/SU(3) coset model with a heavy vector-like fermion. Our scenario produces discoverable effects at the LHC with only 1-2 inverse femtobarns of luminosity at 7-8 TeV. Lastly, we point out that a Tevatron measurement of the b-quark forward-backward asymmetry would be very helpful in characterizing the physics underlying the top-quark asymmetry.Comment: 35 pages, 10 figures, 4 table

    Limit on the mass of a long-lived or stable gluino

    Full text link
    We reinterpret the generic CDF charged massive particle limit to obtain a limit on the mass of a stable or long-lived gluino. Various sources of uncertainty are examined. The RR-hadron spectrum and scattering cross sections are modeled based on known low-energy hadron physics and the resultant uncertainties are quantified and found to be small compared to uncertainties from the scale dependence of the NLO pQCD production cross sections. The largest uncertainty in the limit comes from the unknown squark mass: when the squark -- gluino mass splitting is small, we obtain a gluino mass limit of 407 GeV, while in the limit of heavy squarks the gluino mass limit is 397 GeV. For arbitrary (degenerate) squark masses, we obtain a lower limit of 322 GeV on the gluino mass. These limits apply for any gluino lifetime longer than 30\sim 30 ns, and are the most stringent limits for such a long-lived or stable gluino.Comment: 15 pages, 5 figures, accepted for publication in JHE
    corecore