1,344 research outputs found

    Spontaneous cell polarization: Feedback control of Cdc42 GTPase breaks cellular symmetry.

    Get PDF
    Spontaneous polarization without spatial cues, or symmetry breaking, is a fundamental problem of spatial organization in biological systems. This question has been extensively studied using yeast models, which revealed the central role of the small GTPase switch Cdc42. Active Cdc42-GTP forms a coherent patch at the cell cortex, thought to result from amplification of a small initial stochastic inhomogeneity through positive feedback mechanisms, which induces cell polarization. Here, I review and discuss the mechanisms of Cdc42 activity self-amplification and dynamic turnover. A robust Cdc42 patch is formed through the combined effects of Cdc42 activity promoting its own activation and active Cdc42-GTP displaying reduced membrane detachment and lateral diffusion compared to inactive Cdc42-GDP. I argue the role of the actin cytoskeleton in symmetry breaking is not primarily to transport Cdc42 to the active site. Finally, negative feedback and competition mechanisms serve to control the number of polarization sites

    Quorum sensing with pheromones.

    Get PDF

    Molecular mechanisms of chemotropism and cell fusion in unicellular fungi.

    Get PDF
    In all eukaryotic phyla, cell fusion is important for many aspects of life, from sexual reproduction to tissue formation. Fungal cells fuse during mating to form the zygote, and during vegetative growth to connect mycelia. Prior to fusion, cells first detect gradients of pheromonal chemoattractants that are released by their partner and polarize growth in their direction. Upon pairing, cells digest their cell wall at the site of contact and merge their plasma membrane. In this Review, I discuss recent work on the chemotropic response of the yeast models Saccharomyces cerevisiae and Schizosaccharomyces pombe, which has led to a novel model of gradient sensing: the cell builds a motile cortical polarized patch, which acts as site of communication where pheromones are released and sensed. Initial patch dynamics serve to correct its position and align it with the gradient from the partner cell. Furthermore, I highlight the transition from cell wall expansion during growth to cell wall digestion, which is imposed by physical and signaling changes owing to hyperpolarization that is induced by cell proximity. To conclude, I discuss mechanisms of membrane fusion, whose characterization remains a major challenge for the future

    Capping Protein Insulates Arp2/3-Assembled Actin Patches from Formins.

    Get PDF
    How actin structures of distinct identities and functions coexist within the same environment is a critical self-organization question. Fission yeast cells have a simple actin cytoskeleton made of four structures: Arp2/3 assembles actin patches around endocytic pits, and the formins For3, Cdc12, and Fus1 assemble actin cables, the cytokinetic ring during division, and the fusion focus during sexual reproduction, respectively. The focus concentrates the delivery of hydrolases by myosin V to digest the cell wall for cell fusion. We discovered that cells lacking capping protein (CP), a heterodimer that blocks barbed-end dynamics and associates with actin patches, exhibit a delay in fusion. Consistent with CP-formin competition for barbed-end binding, Fus1, F-actin, and the linear filament marker tropomyosin hyper-accumulate at the fusion focus in cells lacking CP. CP deletion also rescues the fusion defect of a mutation in the Fus1 knob region. However, myosin V and exocytic cargoes are reduced at the fusion focus and diverted to ectopic foci, which underlies the fusion defect. Remarkably, the ectopic foci coincide with Arp2/3-assembled actin patches, which now contain low levels of Fus1. We further show that CP localization to actin patches is required to prevent the formation of ectopic foci and promote efficient cell fusion. During mitotic growth, actin patches lacking CP similarly display a dual identity, as they accumulate the formins For3 and Cdc12, normally absent from patches, and are co-decorated by the linear filament-binding protein tropomyosin and the patch marker fimbrin. Thus, CP serves to protect Arp2/3-nucleated structures from formin activity

    Spatial focalization of pheromone/MAPK signaling triggers commitment to cell-cell fusion.

    Get PDF
    Cell fusion is universal in eukaryotes for fertilization and development, but what signals this process is unknown. Here, we show in Schizosaccharomyces pombe that fusion does not require a dedicated signal but is triggered by spatial focalization of the same pheromone-GPCR (G-protein-coupled receptor)-MAPK signaling cascade that drives earlier mating events. Autocrine cells expressing the receptor for their own pheromone trigger fusion attempts independently of cell-cell contact by concentrating pheromone release at the fusion focus, a dynamic actin aster underlying the secretion of cell wall hydrolases. Pheromone receptor and MAPK cascade are similarly enriched at the fusion focus, concomitant with fusion commitment in wild-type mating pairs. This focalization promotes cell fusion by immobilizing the fusion focus, thus driving local cell wall dissolution. We propose that fusion commitment is imposed by a local increase in MAPK concentration at the fusion focus, driven by a positive feedback between fusion focus formation and focalization of pheromone release and perception

    The Tea4-PP1 landmark promotes local growth by dual Cdc42 GEF recruitment and GAP exclusion.

    Get PDF
    Cell polarization relies on small GTPases, such as Cdc42, which can break symmetry through self-organizing principles, and landmarks that define the axis of polarity. In fission yeast, microtubules deliver the Tea1-Tea4 complex to mark cell poles for growth, but how this complex activates Cdc42 is unknown. Here, we show that ectopic targeting of Tea4 to cell sides promotes the local activation of Cdc42 and cell growth. This activity requires that Tea4 binds the type I phosphatase (PP1) catalytic subunit Dis2 or Sds21, and ectopic targeting of either catalytic subunit is similarly instructive for growth. The Cdc42 guanine-nucleotide-exchange factor Gef1 and the GTPase-activating protein Rga4 are required for Tea4-PP1-dependent ectopic growth. Gef1 is recruited to ectopic Tea4 and Dis2 locations to promote Cdc42 activation. By contrast, Rga4 is locally excluded by Tea4, and its forced colocalization with Tea4 blocks ectopic growth, indicating that Rga4 must be present, but at sites distinct from Tea4. Thus, a Tea4-PP1 landmark promotes local Cdc42 activation and growth both through Cdc42 GEF recruitment and by creating a local trough in a Cdc42 GAP

    Yeasts as models in cell biology.

    Get PDF

    Ultrastructural plasma membrane asymmetries in tension and curvature promote yeast cell fusion.

    Get PDF
    Cell-cell fusion is central for sexual reproduction, and generally involves gametes of different shapes and sizes. In walled fission yeast Schizosaccharomyces pombe, the fusion of h+ and h- isogametes requires the fusion focus, an actin structure that concentrates glucanase-containing vesicles for cell wall digestion. Here, we present a quantitative correlative light and electron microscopy (CLEM) tomographic dataset of the fusion site, which reveals the fusion focus ultrastructure. Unexpectedly, gametes show marked asymmetries: a taut, convex plasma membrane of h- cells progressively protrudes into a more slack, wavy plasma membrane of h+ cells. Asymmetries are relaxed upon fusion, with observations of ramified fusion pores. h+ cells have a higher exo-/endocytosis ratio than h- cells, and local reduction in exocytosis strongly diminishes membrane waviness. Reciprocally, turgor pressure reduction specifically in h- cells impedes their protrusions into h+ cells and delays cell fusion. We hypothesize that asymmetric membrane conformations, due to differential turgor pressure and exocytosis/endocytosis ratios between mating types, favor cell-cell fusion

    Chlorine as a Discriminant Element to Establish the Provenance of Central Mediterranean Obsidians

    Get PDF
    Chlorine is a minor element present in obsidians in quantities greater than in average igneous rocks. The chlorine concentration in obsidians is generally low, of the order of tenths of wt %, but it exhibits an appreciable differentiation among geological sources. Despite these characteristics, chlorine has rarely been taken into consideration as a possible indicator of obsidian provenance and it does not appear in the chemical analytical tables accompanying the geochemical characterisation of obsidian samples. In this work, after an overview of chlorine geochemistry and cycle, we present thirty-one new electron microprobe (EPMA) analyses, including Cl, of geologic obsidians sampled from the four sources of the Central Mediterranean, exploited in prehistoric times (Monte Arci, Palmarola, Lipari and Pantelleria). The results are compared with 175 new EPMA analyses, including Cl, of archaeological obsidians already characterised in previous work and of known provenance. As such it was possible to ascertain that each source has a characteristic chlorine concentration, showing the utility of its use in the studies of obsidian provenance. Furthermore, given that the solubility of chlorine in silicate melts is correlated to its alkali content, in particular sodium, we assessed the efficacy of simple binary graphs Cl vs Na2O to better constrain the provenance of the obsidian samples

    On the observability of Majoron emitting double beta decays

    Get PDF
    Because of the fine-tuning problem in classical Majoron models in recent years several new models were invented. It is pointed out that double beta decays with new Majoron emission depend on new matrix elements, which have not been considered in the literature. A calculation of these matrix elements and phase space integrals is presented. We find that for new Majoron models extremely small decay rates are expected
    corecore