4,315 research outputs found

    A versatile source of polarisation entangled photons for quantum network applications

    Get PDF
    We report a versatile and practical approach for generating high-quality polarization entanglement in a fully guided-wave fashion. Our setup relies on a high-brilliance type-0 waveguide generator producing paired photon at a telecom wavelength associated with an advanced energy-time to polarisation transcriber. The latter is capable of creating any pure polarization entangled state, and allows manipulating single photon bandwidths that can be chosen at will over five orders of magnitude, ranging from tens of MHz to several THz. We achieve excellent entanglement fidelities for particular spectral bandwidths, i.e. 25 MHz, 540 MHz and 100 GHz, proving the relevance of our approach. Our scheme stands as an ideal candidate for a wide range of network applications, ranging from dense division multiplexing quantum key distribution to heralded optical quantum memories and repeaters.Comment: 5 figure

    Excitation and Reemission of Molecules near Realistic Plasmonic Nanostructures

    Get PDF
    The enhancement of excitation and reemission of molecules in dose proximity to plasmonic nanostuctures is studied with special focus on the comparison between idealized and realistically shaped nonostructures. Numerical experiments show that for certain applications choosing a realistic geometry closely resembling the actual nanostructure is imperative, an idealized simulation geometry yielding significantly different results. Finally, a link between excitation and reemission processes is formed via the theory of optical reciprocity; allowing a transparent view of the electromagnetic processes involved in plasMon-enhanced fluorescence and Raman-scattering

    Strong enhancement of forbidden atomic transitions using plasmonic nanostructures

    Get PDF
    We investigate the mediation of symmetry-forbidden atomic transitions using plasmonic nanostructures. We show that the excitation of the electric dipole-forbidden, quadrupole-allowed 6 2S1/2 − 5 2D5/2 transition in cesium may be enhanced by more than 6 orders of magnitude in the intense, inhomogeneous near field of a plasmonic nanoantenna. Using optical reciprocity, the enhancement can be understood to apply to spontaneous emission as well, allowing the fast and efficient optical detection of excited atoms

    Pitfalls in the Determination of Optical Cross Sections From Surface Integral Equation Simulations

    Get PDF
    Calculation of electromagnetic cross sections from surface integral equation simulations, a popular approach in microwave studies and recently also in optics and plasmonics, requires only a single post-processing step, which can, however, be very sensitive to the precision of the simulation result. We investigate the accuracy and robustness of two methods for cross section calculation, displaying when and why errors may occur, in certain cases even unphysical behavior. A calculation recipe which avoids unphysical results is given, ensuring convergence of all obtained cross sections. This study will help judge the accuracy of performed simulations and can prevent misinterpretation of modeling results

    Modeling near-field properties of plasmonic nanoparticles: a surface integral approach

    Get PDF
    Recent developments in nanofabrication and optical near-field metrology have faced complementary modeling techniques with new demands. We present a surface integral formulation that accurately describes the extreme near-field of a plasmonic nanoparticle in addition to its far-field properties. Flexible surface meshing gives precise control over even complex geometries allowing investigation of the effects of fabrication accuracy and material homogeneity on a particle's optical response. Using this technique, the influence of a particle's symmetry and shape on surrounding "hot spots" of extremely large field enhancement is explored, giving insight into the mechanisms of surface enhanced Raman scattering and single-molecule detection techniques

    Surface integral formulation for 3D simulations of plasmonic and high permittivity nanostructures

    Get PDF
    Among the most popular approaches used for simulating plasmonic systems, the discrete dipole approximation suffers from poorly scaling volume discretization and limited near-field accuracy. We demonstrate that transformation to a surface integral formulation improves scalability and convergence and provides a flexible geometric approximation allowing, e.g., to investigate the influence of fabrication accuracy. The occurring integrals can be solved quasi-analytically, permitting even rapidly changing fields to be determined arbitrarily close to a scatterer. This insight into the extreme near-field behavior is useful for modeling closely packed particle ensembles and to study "hot spots" in plasmonic nanostructures used for plasmon-enhanced Raman scattering. (C) 2009 Optical Society of Americ

    Accurate and versatile modeling of electromagnetic scattering on periodic nanostructures with a surface integral approach

    Get PDF
    A surface integral formulation for light scattering on periodic structures is presented. Electric and magnetic field equations are derived on the scatterers' surfaces in the unit cell with periodic boundary conditions. The solution is calculated with the method of moments and relies on the evaluation of the periodic Green's function performed with Ewald's method. The accuracy of this approach is assessed in detail. With this versatile boundary element formulation, a very large variety of geometries can be simulated, including doubly periodic structures on substrates and in multilayered media. The surface discretization shows a high flexibility, allowing the investigation of irregular shapes including fabrication accuracy. Deep insights into the extreme near-field of the scatterers as well as in the corresponding far-field are revealed. This method will find numerous applications for the design of realistic photonic nanostructures, in which light propagation is tailored to produce novel optical effects. (C) 2010 Optical Society of Americ

    Knowledge-Attitudes-Practices About Malaria Among Communities in Southern Benin

    Get PDF
    Malaria still remains the main public health problem in Benin. We explored the determinants that influenced malaria treatment as well as protective behaviors, to generate a framework of useful ideas as alternative strategies against malaria. A cross-sectional survey of the knowledge, attitudes and practices (KAP) was conducted at Hozin, Vakon and Agblangandan districts in southern region of Benin. Descriptive statistics were computed and mixed logistic regression helped evaluating the relationship between frequency of each category of severity of malaria and sex group, educational level, treatment, means of self-protection against mosquitoes and identification of the cause of malaria. A significant proportion 750 (81.3%) (p<0.001) of participants stated that malaria was caused by mosquitoes. The respondents who mentioned sun as the cause of malaria, have trivialized more malaria in a proportion of about 59.30% (OR=2.67 [95% CI 1.61-4.44]) followed by those who have reported the cause of body weakness (43.68%) (OR=2.97 [95% CI 1.68-5.28]). Poor knowledge justifies the trivialization of the disease and poor management of malaria control means. National Malaria Control Programs should improve access to education, especially for women and could help improving prevention and control behaviours against malaria in communities

    Statistical mechanics of error exponents for error-correcting codes

    Full text link
    Error exponents characterize the exponential decay, when increasing message length, of the probability of error of many error-correcting codes. To tackle the long standing problem of computing them exactly, we introduce a general, thermodynamic, formalism that we illustrate with maximum-likelihood decoding of low-density parity-check (LDPC) codes on the binary erasure channel (BEC) and the binary symmetric channel (BSC). In this formalism, we apply the cavity method for large deviations to derive expressions for both the average and typical error exponents, which differ by the procedure used to select the codes from specified ensembles. When decreasing the noise intensity, we find that two phase transitions take place, at two different levels: a glass to ferromagnetic transition in the space of codewords, and a paramagnetic to glass transition in the space of codes.Comment: 32 pages, 13 figure
    • 

    corecore