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Strong enhancement of forbidden atomic transitions using plasmonic nanostructures
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We investigate the mediation of symmetry-forbidden atomic transitions using plasmonic nanostructures. We
show that the excitation of the electric dipole-forbidden, quadrupole-allowed 6 2S1/2 − 5 2D5/2 transition in
cesium may be enhanced by more than 6 orders of magnitude in the intense, inhomogeneous near field of a
plasmonic nanoantenna. Using optical reciprocity, the enhancement can be understood to apply to spontaneous
emission as well, allowing the fast and efficient optical detection of excited atoms.
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I. INTRODUCTION

In recent years, plasmonic nanostructures have been used
extensively for enhancing fluorescence and Raman scatter-
ing at surrounding molecules. Astounding single-molecule
detection has been demonstrated experimentally, displaying
both high sensitivity and spacial selectivity [1–7]. These feats
are possible due to the ability of plasmonic particles to con-
centrate light into strongly localized and enhanced hot spots.
These subwavelength modes allow selective probing of single
molecules, the field enhancement increasing fluorescence or
scattering intensities to a level which can more easily be
measured.

The coincidence of high intensity and localization also
supports the enhancement of another type of process. The
high field inhomogeneity observed in the near field of
nanoscopic objects can be used to excite dipole-forbidden
atomic transitions that are nearly unobservable under plane-
wave illumination [8]. In combination with the high field
enhancement observed in their near field, plasmonic nanos-
tructures display field gradients unmatched by those ob-
tained using conventional methods such as tight focusing
or evanescent fields; thus they should be ideally suited for
mediating symmetry-forbidden processes. In this work, the
mediation of electric dipole-forbidden, quadrupole-allowed
transitions using a plasmonic nanoantenna is investigated in
a case study of the 6 2S1/2 − 5 2D5/2 transition in cesium. A
quantitative expression for the enhancement in an arbitrary
field is derived to then be applied to the numerically calculated
field around a nanoantenna. The plasmonically enhanced field
is shown to boost absorption and spontaneous emission of the
quadrupole transition by 6 orders of magnitude, much more
than dipole-allowed transitions, for which enhancement is in
the hundreds [9].

II. METHOD

When exciting an atomic transition with an external
electromagnetic field, the transition rate γ can be derived
from Fermi’s golden rule using time-dependent perturbation
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theory [10] and we can write γ ∝ |〈ϕf |W |ϕi〉|2. Here, W is the
Hamiltonian for the interaction of an electron with the external
electromagnetic field and ϕi and ϕf are the electronic wave
functions of the transition’s initial and final states, respectively.
The general form of W neglecting spin is

W = − e

m
p · A + e2

2m
|A|2 + eφ , (1)

where e, m, and p are the electron’s charge, mass, and
canonical momentum and A and φ are the electromagnetic
vector and scalar potentials at the position of the electron. By
appropriate choice of gauge, the potentials φ and A can be
expressed in terms of Taylor expansions of the electric and
magnetic fields (E and B) about the origin (r = 0), i.e., the
atom’s nucleus [11], and the interaction Hamiltonian can be
written as

W = er · E0 − eQ : (∇E)0 − em · B0 + · · · , (2)

where er is the electric dipole, eQ = e
2 rr is the electric

quadrupole, and em = e
2m

r × p is the magnetic dipole mo-
ment. Here, (CD)ij = CiDj is the outer product; thus ∇F is
the transposed Jacobian matrix of F. The subscript 0 denotes
a value at the origin and the double dot product is defined as
C : D = ∑

ij CijDji . In this study, the mediation of electric
quadrupole transitions in a harmonic electromagnetic field is
considered and so the corresponding transition rate can be
described using

γQ = C1 |〈ϕf |Q|ϕi〉 : (∇E)0|2 , (3)

with the constant factor C1.
The lower electronic states of alkali-metal atoms take on a

simple form as their shell contains only one valence electron.
The wave function of this electron can be separated into radial
and angular parts,

ϕnlm(r,θ,φ) = Rnl(r)Ylm(θ,φ) , (4)

where n, l, and m are the principal, azimuthal, and magnetic
quantum numbers, respectively. The function Rnl is only
a function of the radius and Ylm is spherical harmonics.
Separating the r dependence from the quadrupole moment,
Q = r2 Q

r2 , the transition rate can be written as

γQ = C2

∣
∣
∣
∣〈Yl′m′ | Q

r2
|Ylm〉 : (∇E)0

∣
∣
∣
∣

2

, (5)

022501-11050-2947/2012/85(2)/022501(5) ©2012 American Physical Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147979827?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevA.85.022501


A. M. KERN AND O. J. F. MARTIN PHYSICAL REVIEW A 85, 022501 (2012)

where C2 = C1|〈Rn′l′ |r2|Rnl〉|2. Here, the r dependence
is evaluated with the radial function Rnl , leaving Q

r2 to couple
with the spherical harmonics [12]. The quantum numbers of
the initial and final wave functions are written unprimed and
primed, respectively.

The dipole-forbidden, quadrupole-allowed 6 2S1/2 −
5 2D5/2 transition in cesium lends itself to the current study
as its energy lies in the visible range at λ = 685 nm. This
transition was the subject of a theoretical and experimental
study utilizing the inhomogeneous evanescent field at total
internal reflection to mediate the otherwise nearly unobserv-
able absorption [13]. The 5d shell of cesium is initially
empty, and so the transition rate must be summed over all
m′ = −2, . . . ,2. The matrices 〈Y2m′ | Q

r2 |Y00〉 can then easily be
computed by integration over the solid angle. Finally, as the
atom is randomly oriented, the transition rate is averaged over
the orientation [14,15]. Note that for fixed atom alignment, the
transition rate will depend on the magnetic quantum number m′
of the final state [12]. Here, however, the atoms are randomly
oriented and the spacial averaging yields identical transition
rates for each m′.

To calculate the transition enhancement in an inhomoge-
neous field, one first must calculate the transition rate under
plane-wave illumination, for which the matrix ∇E takes on a
very simple form. For example, for an x-polarized plane wave
propagating in the z direction, Epw = E0êxe

ikz, one obtains
only one nonzero element, (∇Epw)zx = ikE0e

ikz, where k

is the norm of the wave vector. The orientation-averaged
transition rate can then be computed to γ̄

pw
Q = C2k

2 |E0|2 /15.
Considering that we have averaged over the orientation,
this result is valid for plane waves of all polarization and
propagation directions. One can now define the enhancement
factor FQ of an arbitrary field as the enhancement of the
transition rate compared to that obtained under plane-wave
illumination, FQ = γ̄Q/γ̄

pw
Q . The constant C2 then cancels out

and does not need to be determined.
For certain inhomogeneous fields, the Jacobian matrix can

be analytically computed. For example, the evanescent field
of a plane wave totally internally reflected at an interface
takes on a well-known form [12,13]. For sake of comparison,
the system described in Ref. [13] was reproduced with the
formulation given in this paper, assuming λ = 685 nm and a
glass prism with n = 1.456 in vacuum. For the simpler case
of s polarization, this leads to the expected enhancement of
FQ ∼ 3 at the interface, decreasing with the distance from the
glass surface.

When calculating the enhancement factor FQ around a plas-
monic nanoantenna, the Jacobian matrix cannot be calculated
analytically. Instead, surface integral equation (SIE) simula-
tions [16] were used here to determine ∇E numerically. As a
geometry, gold dipole antennas with square cross sections of
40 × 40 nm2 and gap sizes g between 5 and 25 nm were chosen
(see Fig. 1). The arm lengths were engineered so that
all the antennas resonated at λ = 685 nm, with the rel-
ative permittivity of gold εr = −15.4 + 1.02i taken from
Ref. [17]. The antennas were excited by x-polarized plane
waves propagating along the z axis. Difference quotients
with steps of 0.1 nm were used to compute the spatial
derivatives.

FIG. 1. (Color online) Geometry of the simulated nanoantennas.
The gap width g is varied between 5 and 25 nm; the length of the
40 × 40 nm2 cross section arms is varied so the antennas resonate at
λ = 685 nm.

III. RESULTS AND DISCUSSION

A. Absorption enhancement

First, the quadrupole enhancement was calculated at points
1 nm above the surface of the antennas’ left arms. The obtained
enhancement factors for resonant excitation are shown in Fig. 2
for gap sizes g = 5 and 25 nm.

The values are displayed using an equirectangular repre-
sentation, unwrapped like a map of the globe (see Fig. 1).
The arms’ right (inside) and left (outside) ends are located
at (0◦N,90◦E) and (0◦N,−90◦E), respectively. Many prop-
erties of the enhancement can be seen here. First, stronger
enhancement can be obtained with a smaller gap size. This is
in part because the field enhancement in the gap is greater for
smaller gap sizes [18]. Increasing the total field strength will
increase the elements of ∇E by the same degree, resulting in
a higher enhancement factor FQ. Second, a very small gap
size will result in a nearly homogeneous field distribution in
the gap, like that inside a plate capacitor. The elements of ∇E
should thus be small in the space between the antenna’s arms,
rising as one leaves the gap. This behavior is clearly visible
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FIG. 2. (Color online) Quadrupole transition rate enhancement
FQ at points 1 nm above the surface of the left arms of resonantly
excited gold nanoantennas with gap sizes of g = 5 and 25 nm. Values
are displayed using an equirectangular representation.
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FIG. 3. (Color online) Log-axis histograms of the field in an (80 nm)3 box around the gaps of antennas with gap widths g = 5, 15, and
25 nm. The white dashed lines show values of constant fQ = FQ/Fint and the red dashed lines show the approximated fQ = (kg)−2 for a
subwavelength aperture.

in Fig. 2, especially for g = 5 nm. For larger gaps, or at the
antennas’ outside edges, the largest transition enhancement
can be observed at the antennas’ corners (rounded to an 8-nm
radius in the simulations). Here, a high gradient in the field
strength is expected due to the lightning-rod effect. Finally,
one can see that enhancement factors of greater than 106 are
obtained, suggesting that a plasmonic antenna may indeed lead
to a considerable and measurable increase in the transition
rate.

To quantify the behavior in the three regions observable
in Fig. 2 (far from the antenna, at the corners, and near the
gap), the intensity and quadrupole enhancement factors were
computed at 2 × 105 points in a box enclosing all three regions.
Histograms of these calculations, shown in Fig. 3, allow
one to identify and characterize the behavior in the different
regions. Note that in this logarithmic representation, the
histograms’ bins scale with the axes, and so the graphs are
more sensitive for higher axis values. The first region, far from
the antenna, is represented by the points with low-intensity
enhancement (Fint ∼ 10) and shows comparable behavior for
the three shown gap widths. The field at the corners of the
antennas is strongly enhanced and inhomogeneous, leading
to large intensity and quadrupole enhancement factors, and is
represented by the faint tails reaching upward of Fint = 103 and
FQ = 106. Finally, the region around the gap is characterized
by a transition from a strong, homogeneous field in the gap
(high Fint and low FQ) over a rapid field decay (lower Fint

and high FQ) to continually decreasing intensity (decreasing
Fint and FQ). This behavior is easily recognized in the curved
lines beginning on the bottom right of the graphs (i.e., in
the gap) and arcing up and to the left. These curves show a
strong dependence on the gap width g. The largest quadrupole
enhancement in the gap region can be extracted from the
curves’ maxima. For small gap widths, this maximum exceeds
106 and overlaps the enhancement at the corners, in agreement
with the behavior shown in Fig. 2.

The histograms in Fig. 3 show that the intensity and
quadrupole enhancement factors are correlated, as observed in
Fig. 2. The contribution of the intensity enhancement can be
removed from FQ by considering the quotient fQ = FQ/Fint,
indicated by the white dashed lines in Fig. 3. This corresponds
to the enhancement caused purely by the localization of the
field around the antennas and the resulting field gradient, i.e.,
the local modification of the transition’s oscillator strength.

With the exception of the region inside the gap, this factor
takes on values between 102 and 104.

In the near field behind a subwavelength aperture, the wave
vector can be approximated by k′ = 1/w, where w is the
width of the aperture [19]. By replacing w with the antenna’s
gap width g, this leads to a value of fQ = (kg)−2 for the
enhancement near the gap, indicated by the red dashed lines
in Fig. 3. One can see that while the maximum simulated
enhancement near the gap follows the trend given by this
approximation, the values for the nanoantenna are in fact
higher. This is explained by the fact that the antenna not only
confines the light in its gap, but locally enhances its intensity
there as well, leading to a higher field gradient even after
division by Fint.

B. Emission enhancement

Until now, the excitation enhancement of quadrupole
transitions was discussed. Using the theory of electromagnetic
reciprocity [20,21], the enhancement can be interpreted to
apply to spontaneous emission as well [9]. A large increase
in the local density of optical states in the vicinity of the
nanoantenna causes a decrease in the excited state’s lifetime by
the same factor as derived for the excitation enhancement. With
enhancement factors of more than 105, quadrupole transitions
may show decay rates similar to or larger than those normally
observed in dipole-allowed transitions in free space. One must
take into account, however, that an atom decaying in the
vicinity of a plasmonic structure may be quenched, decaying
into a nonradiative mode, and the energy converted to heat by
the losses in the metal [22]. To investigate the efficiency of
the emission process, the behavior of a quadrupole emitter
located in the midgap plane was investigated. Figure 4(a)
shows the enhancement Frad of the power Prad radiated to
the far field compared to free-space emission for quadrupole
emitter positions between the gap’s center (z = 0) and edge
(z = 20 nm), assuming a constant quadrupole moment. One
can clearly see the reverse process of that shown in Fig. 2.
The highest emission enhancement is reached not in the gap’s
center but when leaving the homogeneous field in the gap
at around z ≈ 15 nm. Calculating the power Pabs absorbed
by the gold nanoantenna, one can then compute the radiative
quantum yield Q = Prad/(Prad + Pabs) of the emission process,
shown in Fig. 4(b). A high quantum yield of ∼0.3 is obtained
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FIG. 4. Radiated power enhancement (a) and quantum yield (b)
of an ideally oriented quadrupole emitter located in the midgap plane
at distances z from the gap’s center.

at the position of maximum radiation. For a dipole emitter
near a plasmonic particle, the shortest decay lifetime, obtained
at the particle’s surface, is annulled by a vanishing radiative
quantum yield, resulting in nearly zero radiated power [22]. In
the case of a quadrupole emitter decaying in the gap region of
a nanoantenna, on the other hand, a strongly shortened lifetime
is reached some distance from the antenna’s surface. The
resulting high quantum yield leads to a very large enhancement
of the power radiated to the far field.

C. Discussion

In the last section it was shown that a plasmonic nanoan-
tenna can enhance the transition rate of an atomic quadrupole
transition by over 6 orders of magnitude—much more than
in an evanescent field. This result is now compared to the
effect of other nanoscale objects reported in the literature.
For example, enhancement of quadrupole transitions in the
near field of a dielectric nanosphere has been discussed in
an interesting analytical investigation [8]. While the intensity
enhancement around a dielectric sphere is expected to be
less than the hot spots observed near plasmonic nanopar-
ticles, the field gradient can still be large given a small
enough sphere. However, to obtain the enhancement factor
of 106 observed for nanoantennas, a glass sphere would
have to be about 1 nm in diameter, resulting in an extremely
small enhancement volume. In addition, such a small sphere
would be difficult to fabricate in a controlled geometric
distribution, making selective enhancement at specific atoms
problematic.

The quadrupole enhancement factor has also been calcu-
lated for subwavelength metallic gratings in a recent numerical
study [19]. Apart from strong enhancement at the rectangular
grating’s corners, high values of fQ ∼ 1000 are only reported
for nearly vanishing Fint and thus low FQ. A plasmonic
nanoantenna, on the other hand, displays strong fQ and FQ in
the region near the gap in addition to the large enhancement at
the corners. Besides being tunable in enhancement factor and
volume, the enhancement in the gap region has the advantage
of being separated from the surface of the antennas, which
reduces quenching during emission processes as discussed in
Sec. III B.

The strong enhancement of an atom’s radiative decay
rate can be used for fast preparation and detection of long-
lived states. Approaching a trapped atomic cloud toward a
nanostructured surface [23], selective interaction of atoms with
plasmonic nanoantennas might be realized. This process could
be implemented in a miniaturized atomic clock or in quantum
computation applications, where preparation and detection
of long-lived atomic states are required for the initialization
and readout of computation processes. Efficient near-field
coupling from the nanoantenna to a plasmonic waveguide
[24] could then be used to directly pass along the quantum
signal [25].

In the applications described above, it may be necessary to
keep the used atoms at very low temperatures and thus a low
kinetic energy. In this case, the comparatively weak forces on
the atoms induced by nonresonant dipole interaction and the
Casimir-Polder (CP) potentials must be considered [26] as they
may prevent the atoms from entering the interaction region
around the antennas. The CP force at a surface is generally
attractive and will actually facilitate interaction, drawing atoms
toward antennas located on the surface. A nonresonant dipole
in an electric field gradient, on the other hand, can give rise
to a force opposite (in) the direction of the field gradient
for oscillating fields blue (red)-shifted with respect to the
dipole’s resonance frequency [27]. If an atom exhibits a strong
electric dipole-allowed transition red-detuned with respect
to the investigated quadrupole transition, the resulting force
may thus prevent it from approaching the antenna. At room
temperature, the kinetic energy of the atoms is much higher
than the CP and nonresonant dipole potentials and these forces
can be neglected.

Finally, the extremely high enhancement factor of the
quadrupole transition rate leads to a large contrast in fluo-
rescence between atoms close to a nanoantenna and those
further away. While the enhancement of dipole-allowed
transitions will provide a contrast of ∼5, neglecting intrinsic
quenching [22,28], a quadrupole transition will experience
an enhancement of many orders of magnitude, matching the
contrast of surface-enhanced Raman scattering, but with a
larger initial cross section.

IV. SUMMARY

In this paper, we have shown that symmetry-forbidden
atomic transitions can be strongly enhanced using plasmonic
nanostructures. As an example, a local enhancement by more
than 6 orders of magnitude was calculated for the excitation
of the 6 2S1/2 − 5 2D5/2 electric quadrupole transition in
cesium near a gold nanoantenna. This effect is stronger than
reported for other nanostructures due to the capacity of the
nanoantenna to both strongly increase and localize the field.
The quadrupole enhancement applies to spontaneous emission
as well, displaying a comparatively high quantum yield due
to a separation of the enhancement region from the antenna’s
surface.
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[4] A. J. Meixner, T. Vosgröne, and M. Sackrow, J. Lumin. 94-95,

147 (2001).
[5] J. Jiang, K. Bosnick, M. Maillard, and L. Brus, J. Phys. Chem.

B 107, 9964 (2003).
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