10,226 research outputs found

    Benthic biomass size spectra in shelf and deep-sea sediments

    Get PDF
    The biomass distributions of marine benthic metazoans (meio- to macro-fauna, 1 ?g–32 mg wet weight) across three contrasting sites were investigated to test the hypothesis that allometry can consistently explain observed trends in biomass spectra. Biomass (and abundance) size spectra were determined from observations made at the Faroe–Shetland Channel (FSC) in the Northeast Atlantic (water depth 1600 m), the Fladen Ground (FG) in the North Sea (150 m), and the hypoxic Oman Margin (OM) in the Arabian Sea (500 m). Observed biomass increased with body size as a power law at FG (scaling exponent, b = 0.16) and FSC (b = 0.32), but less convincingly at OM (b = 0.12 but not significantly different from 0). A simple model was constructed to represent the same 16 metazoan size classes used for the observed spectra, all reliant on a common detrital food pool, and allowing the three key processes of ingestion, respiration and mortality to scale with body size. A micro-genetic algorithm was used to fit the model to observations at the sites. The model accurately reproduces the observed scaling without needing to include the effects of local influences such as hypoxia. Our results suggest that the size-scaling of mortality and ingestion are dominant factors determining the distribution of biomass across the meio- to macrofaunal size range in contrasting marine sediment communities. Both the observations and the model results are broadly in agreement with the "metabolic theory of ecology" in predicting a quarter power scaling of biomass across geometric body size classes

    The Trypanosoma cruzi enzyme TcGPXI is a glycosomal peroxidase and can be linked to trypanothione reduction by glutathione or tryparedoxin.

    No full text
    Trypanosoma cruzi glutathione-dependent peroxidase I (TcGPXI) can reduce fatty acid, phospholipid, and short chain organic hydroperoxides utilizing a novel redox cycle in which enzyme activity is linked to the reduction of trypanothione, a parasite-specific thiol, by glutathione. Here we show that TcGPXI activity can also be linked to trypanothione reduction by an alternative pathway involving the thioredoxin-like protein tryparedoxin. The presence of this new pathway was first detected using dialyzed soluble fractions of parasite extract. Tryparedoxin was identified as the intermediate molecule following purification, sequence analysis, antibody studies, and reconstitution of the redox cycle in vitro. The system can be readily saturated by trypanothione, the rate-limiting step being the interaction of trypanothione with the tryparedoxin. Both tryparedoxin and TcGPXI operate by a ping-pong mechanism. Overexpression of TcGPXI in transfected parasites confers increased resistance to exogenous hydroperoxides. TcGPXI contains a carboxyl-terminal tripeptide (ARI) that could act as a targeting signal for the glycosome, a kinetoplastid-specific organelle. Using immunofluorescence, tagged fluorescent proteins, and biochemical fractionation, we have demonstrated that TcGPXI is localized to both the glycosome and the cytosol. The ability of TcGPXI to use alternative electron donors may reflect their availability at the corresponding subcellular sites

    Rivers of the Anthropocene, Phase 1: A Comparative Study of the Ohio and Tyne River Systems

    Get PDF
    poster abstractRivers of the Anthropocene” addresses a fundamental problem facing scholars and policy makers alike: despite important advances in our understanding of the earth as a system — one in which humans and human systems have become recognized as prime agents in effecting changes to the earth — we have yet to create an approach that brings together scholars of earth systems with scholars of human systems. This is to the detriment of our overall understanding of global ecological change and limits our ability to respond to escalating crises. Without integrating methods from the earth sciences, social sciences, and humanities, scholars of the environment lose important tools in tackling some of the biggest issues facing humanity in the 21st century. As humans continue to play an increasingly significant role in altering their planet, it is incumbent upon environmental scholars to understand the human-environment interface in all its complexities. It is not enough that scientists measure what humans have done or what they can do to shift environmental systems; it is necessary that they work hand-in-hand with specialists in human systems to understand the limits and feedback mechanisms that beliefs, practices, ideologies, social structures, and cultural norms impose on human action. A comparative study of international river systems is a good place to begin building more meaningful bridges across the science-humanities divide, and it addresses the pressing issue of global water insecurity, which 80% of the earth’s population faces. The first stage of “Rivers of the Anthropocene” will create a flexible, interdisciplinary methodological and conceptual framework for examining the human-environment interface, one in which specialists in the earth sciences can learn from the approaches of the humanities and human sciences and vice versa

    OCEANIC FLUXES FROM PROGLACIAL AND DEGLACIAL WATERSHEDS IN WESTERN GREENLAND

    Get PDF
    Weathering in western Greenland occurs in two distinct environments: proglacial watersheds that extend from the margin of the Greenland Ice Sheet (GIS) and derive water from ice melt, and deglacial watersheds that develop on terrains unconnected to the GIS and derive water from annual precipitation. Proglacial and deglacial watersheds currently provide equal amounts of runoff in western Greenland. These watersheds may contribute different solute fluxes to the oceans depending on exposure age, climate, and weathering environment. We test this hypothesis by comparing chemical compositions of streams in four deglacial watersheds (Sisimiut, Nerumaq, Qorlortoq, Kangerlussuaq) and one proglacial watershed (Watson River Akuliarusiarsuup Kuua River; AKR) along a ~160 km transect from the coast to the GIS. Recent work found that weathering reactions in the deglacial watersheds shift from being dominated by carbonate dissolution inland to sulfide oxidation near the coast. Silicate weathering, based on increased Si, Na and K concentrations, is a minor source of solutes to deglacial streams and is less extensive near the GIS than the coast, where older moraines experience greater precipitation. In general, specific conductivity (SpC: 48-301 μS/cm) and pH (7.0-8.2) increase inland as precipitation decreases and fresh mineral surfaces become more common. The AKR, in contrast, has lower average SpC (11.9 uS/cm) and pH (6.86) than the deglacial streams. Low SpC reflects dilution by ice melt and short residence time of water in the subglacial system. Proglacial flow is enriched in Si compared to deglacial flow particularly near headwaters, indicating higher silicate weathering rates in the pro- and sub-glacial systems. Low pH values indicate: 1) equilibration with atmospheric CO2 in the supraglacial system near headwaters, and 2) acid production generated by sulfide oxidation in the hyporheic zone identified by elevated SO4 concentrations. However, Ca, Mg and HCO3 are the dominant ions over the length of the AKR indicating that dissolution of carbonate is the predominant form of weathering. Our results indicate the two types of watersheds provide distinct fluxes of solutes to the oceans that are likely to change as ice sheets retreat and advance with changing climate

    Hydrologic exchange and chemical weathering in a proglacial watershed near Kangerlussuaq, west Greenland

    Get PDF
    The exchange of proglacial river water with active layer pore water could alter water chemical compositions in glacial outwash plains and oceanic solute fluxes. To evaluate effects of this exchange, we sampled Watson River and adjacent pore water during the 2013 melt season at two sandurs in western Greenland; one in Sandflugtdalen and the other near the confluence with Søndre Strømfjord. We measured temperature, specific conductivity, and head gradients between the river and bank over a week-long period at Sandflugtdalen, as well as sediment hydraulic conductivity and chemical compositions of waters from both sites. Specific conductivity of pore water is four to ten times greater than river water as solutes are concentrated from weathering reactions, cryoconcentration, and evaporation. Pore water compositions are predominantly altered by carbonate dissolution and sulfide mineral oxidation. High concentrations of HCO3 and SO4 result from solute recycling and dissolution of secondary Ca-Mg carbonate/sulfate salts initially formed by near-surface evaporation in the summer and at depth by freeze-in of the active layer and cryoconcentration in the winter. High hydraulic conductivity (10−5 to 10−4 m/s) and diurnal fluctuations of river stage during our study caused exchange of river and pore water immediately adjacent to the river channel, with a net loss of river water to the bank. Pore water \u3e6 m from the river continuously flowed away from the river. Approximately 1–8% of the river discharge through the Sandflugtdalen was lost to the river bank during our 6.75 day study based on calculations using Darcy’s Law. Although not sampled, some of this water should discharge to the river during low river stage early and late in the melt season. Elevated pore water solute concentrations in sandurs and water exchange at diurnal and seasonal frequency should impact fluxes of solutes to the ocean, although understanding the magnitude of this effect will require long-term evaluation throughout the melt season

    Phosphorylation-mediated unfolding of a KH domain regulates KSRP localization via 14-3-3 binding

    Get PDF
    The AU-rich element (ARE)-mediated mRNA-degradation activity of the RNA binding K-homology splicing regulator protein (KSRP) is regulated by phosphorylation of a serine within its N-terminal KH domain (KH1). In the cell, phosphorylation promotes the interaction of KSRP and 14-3-3ζ protein and impairs the ability of KSRP to promote the degradation of its RNA targets. Here we examine the molecular details of this mechanism. We report that phosphorylation leads to the unfolding of the structurally atypical and unstable KH1, creating a site for 14-3-3ζ binding. Using this site, 14-3-3ζ discriminates between phosphorylated and unphosphorylated KH1, driving the nuclear localization of KSRP. 14-3-3ζ –KH1 interaction regulates the mRNA-decay activity of KSRP by sequestering the protein in a separate functional pool. This study demonstrates how an mRNA-degradation pathway is connected to extracellular signaling networks through the reversible unfolding of a protein domain.European Molecular Biology Organization 240-2005Italian CIPE-200

    SEASONAL EVOLUTION AND SPATIAL DISTRIBUTION OF WEATHERING IN WESTERN GREENLAND

    Get PDF
    Through physical weathering, the Greenland Ice Sheet (GIS) produces sediments which are subsequently chemically weathered in three types of watersheds: 1) deglacial watersheds that are physically disconnected from the GIS and drain local precipitation, 2) proglacial watersheds that are hydrologically connected to the GIS, and 3) subglacial watersheds that form beneath the GIS. Chemical weathering in the glacial foreland may be important to atmospheric CO2 drawdown and oceanic fluxes of solutes, yet no holistic study exists that compares solute sources across all types of watersheds and through the melt season. Consequently, we investigated spatiotemporal changes in weathering through the 2013 ablation season from a transect of watersheds spanning the coast to the GIS in western Greenland. We sampled one proglacial (PG) watershed, from which we also assess subglacial (SG) weathering, one inland deglacial (IDG) and one coastal deglacial (CDG) watershed. A simple stoichiometric mass balance quantifies solute sources in each watershed. The principal solute source is trace carbonates in all watersheds; however, IDG has more carbonate (61 vs 36 mol%) and less silicate (3 vs 14 mol%) weathering than CDG. PG has similar carbonate (41 mol%) and silicate weathering (16 mol%) proportions to CDG, despite proximity to IDG. Weathering of biotite decreases from 12 mol% at PG to 3 mol% at CDG along an exposure age gradient, consistent with more radiogenic 87Sr/86Sr in waters at PG (0.73556) than DGC (0.71114). Carbonate weathering decreases and biotite + silicate weathering increases downstream through PG, reflecting increased weathering. Solute sources change little through time or space at IDG, but at PG, silicate weathering increases and carbonate weathering decreases as flow increases through the melt season, consistent with increased contributions of SG waters with long residence times in distributed channels. Thus, the evolution of SG through time and connections between subglacial reservoirs and main flow paths plays an important role in weathering at PG. As the GIS retreats, deglacial watersheds will constitute a greater fraction of the weathering flux and thus increased silicate weathering should alter solute fluxes to the oceans and increase atmospheric CO2 drawdown
    corecore