2,943 research outputs found

    Intracellular pH regulation in isolated trout gill mitochondrion-rich (MR) cell subtypes: Evidence for Na\u3csup\u3e+\u3c/sup\u3e/H\u3csup\u3e+\u3c/sup\u3e activity

    Get PDF
    We have studied intracellular pH (pHi) recovery in isolated trout gill mitochondrion-rich (MR) cells following acidification by the NH4Cl pre-pulse technique. Within a mixed MR cell population, one cell type displayed Na+-independent pHi recovery while the other cell type lacked a Na+-independent pHi recovery. Cells displaying Na+ independent recovery exhibited a significantly higher buffering capacity compared to cells lacking Na+-independent pHi recovery. Cells displaying Na+ independent recovery were identified as PNA+ (peanut lectin agluttinin binding) MR cells while those unable to recover were identified as PNA- (non-peanut lectin agluttinin binding) MR cells. Therefore, recovery from acidification in the absence of Na+ provides a direct functional marker for PNA+ and PNA- MR cells. Re-addition of Na+ to acidified cells resulted in a transient pHi recovery in both cell types. This event was abolished by amiloride (500 ΌM) but it was insensitive to phenamil (50 ΌM). The phorbol ester PMA (1 ΌM) potentiated the Na+ induced pHi recovery suggesting that activation by PKC is required for continuous Na+/H+ exchanger activity in trout gill MR cells. This study is the first functional description of pHi recovery in lectin-identified trout gill MR cells and provides insight into a putative cellular signaling mechanism that may control pHi regulation in the gill epithelium. © 2009 Elsevier Inc. All rights reserved

    A Test of Pre-Main Sequence Evolutionary Models Across the Stellar/Substellar Boundary Based on Spectra of the Young Quadruple GG Tau

    Get PDF
    We present spatially separated optical spectra of the components of the young hierarchical quadruple GG Tau. Spectra of GG Tau Aa and Ab (separation 0".25 ~ 35 AU) were obtained with the Faint Object Spectrograph aboard the Hubble Space Telescope. Spectra of GG Tau Ba and Bb (separation 1".48 ~ 207 AU) were obtained with both the HIRES and the LRIS spectrographs on the W. M. Keck telescopes. The components of this mini-cluster, which span a wide range in spectral type (K7 - M7), are used to test both evolutionary models and the temperature scale for very young, low mass stars under the assumption of coeval formation. Of the evolutionary models tested, those of Baraffe et al. (1998, A&A, 337, 403) yield the most consistent ages when combined with a temperature scale intermediate between that of dwarfs and giants. The version of the Baraffe et al. models computed with a mixing length nearly twice the pressure scale height is of particular interest as it predicts masses for GG Tau Aa and Ab that are in agreement with their dynamical mass estimate. Using this evolutionary model and a coeval (at 1.5 Myrs) temperature scale, we find that the coldest component of the GG Tau system, GG Tau Bb, is substellar with a mass of 0.044 +/- 0.006 Msun. This brown dwarf companion is especially intriguing as it shows signatures of accretion, although this accretion is not likely to alter its mass significantly. GG Tau Bb is currently the lowest mass, spectroscopically confirmed companion to a T Tauri star, and is one of the coldest, lowest mass T Tauri objects in the Taurus-Auriga star forming region.Comment: 25 pages, 6 figures, accepted for publication in The Astrophysical Journa

    The Structure of IR Luminous Galaxies at 100 Microns

    Get PDF
    We have observed twenty two galaxies at 100 microns with the Kuiper Airborne Observatory in order to determine the size of their FIR emitting regions. Most of these galaxies are luminous far-infrared sources, with L_FIR > 10^11 L_sun. This data constitutes the highest spatial resolution ever achieved on luminous galaxies in the far infrared. Our data includes direct measurements of the spatial structure of the sources, in which we look for departures from point source profiles. Additionally, comparison of our small beam 100 micron fluxes with the large beam IRAS fluxes shows how much flux falls beyond our detectors but within the IRAS beam. Several sources with point- like cores show evidence for such a net flux deficit. We clearly resolved six of these galaxies at 100 microns and have some evidence for extension in seven others. Those galaxies which we have resolved can have little of their 100 micron flux directly emitted by a point-like active galactic nucleus (AGN). Dust heated to ~40 K by recent bursts of non-nuclear star formation provides the best explanation for their extreme FIR luminosity. In a few cases, heating of an extended region by a compact central source is also a plausible option. Assuming the FIR emission we see is from dust, we also use the sizes we derive to find the dust temperatures and optical depths at 100 microns which we translate into an effective visual extinction through the galaxy. Our work shows that studies of the far infrared structure of luminous infrared galaxies is clearly within the capabilities of new generation far infrared instrumentation, such as SOFIA and SIRTF.Comment: 8 tables, 23 figure

    Intergenerational Education: The significance of 'reciprocity' and 'place'

    Get PDF
    In this article, the case is made for greater clarity in the definition of intergenerational practice and intergenerational education. Theoretically, the effects of all-age reciprocity and the significance of attending to 'place' are explored. Taken together, they help point to what is distinctive about the scope and purpose of intergenerational education. The author argues that any intergenerational practice must always involve an educative element that is focused, at least in part, on the on-going reciprocal production of new relations between generations through the way challenges are purposefully responded to in some specific place

    Noise Kernel and Stress Energy Bi-Tensor of Quantum Fields in Hot Flat Space and Gaussian Approximation in the Optical Schwarzschild Metric

    Get PDF
    Continuing our investigation of the regularization of the noise kernel in curved spacetimes [N. G. Phillips and B. L. Hu, Phys. Rev. D {\bf 63}, 104001 (2001)] we adopt the modified point separation scheme for the class of optical spacetimes using the Gaussian approximation for the Green functions a la Bekenstein-Parker-Page. In the first example we derive the regularized noise kernel for a thermal field in flat space. It is useful for black hole nucleation considerations. In the second example of an optical Schwarzschild spacetime we obtain a finite expression for the noise kernel at the horizon and recover the hot flat space result at infinity. Knowledge of the noise kernel is essential for studying issues related to black hole horizon fluctuations and Hawking radiation backreaction. We show that the Gaussian approximated Green function which works surprisingly well for the stress tensor at the Schwarzschild horizon produces significant error in the noise kernel there. We identify the failure as occurring at the fourth covariant derivative order.Comment: 21 pages, RevTeX

    Light Element Depletion in Contracting Brown Dwarfs and Pre--Main-Sequence Stars

    Get PDF
    We present an analytic calculation of the thermonuclear depletion of the light elements lithium, beryllium, and boron in fully convective, low-mass stars. Under the presumption that the pre--main-sequence star is always fully mixed during contraction, we find that the burning of these rare light elements can be computed analytically, even when the star is degenerate. Using the effective temperature as a free parameter, we constrain the properties of low-mass stars from observational data, independently of the uncertainties associated with modeling their atmospheres and convection. Our analytic solution explains the dependence of the age at a given level of elemental depletion on the stellar effective temperature, nuclear cross sections, and chemical composition. Most importantly, our results allow observers to translate lithium non-detections in young cluster members into a model-independent minimum age for that cluster. Using this procedure, we have found lower limits to the ages of the Pleiades (100 Myr) and Alpha Persei (60 Myr) clusters. Recent experimental work on the low energy resonance in the ^10B(p,\alpha)^7Be reaction has greatly enhanced estimates of the destruction rate of ^10B, making it possible for stars with M>0.1 M_sun to deplete both ^10B and ^11B before reaching the main sequence. Moreover, there is an interesting range of masses, 0.085 M_sun < M < 0.13 M_sun, where boron depletion occurs on the main sequence in less than a Hubble time, providing a potential ``clock'' for dating low-mass stars.Comment: 34 pages, including 6 figures; Accepted to Ap
    • 

    corecore