3,765 research outputs found

    An adaptive shell element for explicit dynamic analysis of failure in laminated composites Part 2: Progressive failure and model validation

    Get PDF
    To enable modelling of the progressive failure of large, laminated composite components under crash or impact loading, it is key to have a numerical methodology that is both efficient and numerically robust. A potential way is to adopt an adaptive method where the structure is initially represented by an equivalent single-layer shell model, which during the analysis is adaptively transformed to a high-resolution layer-wise model in areas where higher accuracy is required. Such a method was recently developed and implemented in the commercial finite element solver LS-DYNA, aiming at explicit crash analysis (Fr\ue4mby, Fagerstr\uf6m and Karlsson: An adaptive shell element for explicit dynamic analysis of failure in laminated composites - Part 1: Adaptive kinematics and numerical implementation, 2020). In the current work, the method is extended to the case of interacting inter- and intralaminar damage evolution. As a key part, we demonstrate the importance of properly regularising the intralaminar failure described by a smeared-crack model, and show that neglecting to account for the crack-versus-mesh orientation may lead to significant errors in the predicted energy dissipation. We also validate the adaptive approach against a four-point beam bending test with matrix-induced delamination growth, and simultaneously show the capability of the proposed method to – at lower computational expense – replicate the results from a refined, non-adaptive model

    Reverse Circular Bragg Phenomenon

    Get PDF
    The axial propagation of circularly polarized light in an optically active structurally chiral medium is exactly solved via full electromagnetic analysis. Some symmetries of the system's characteristic matrix reveal new insights, which are confirmed by coupled wave theory. For extreme values of chirality, now accessible via metamaterials, a reverse circular Bragg resonance arises in the negative refraction regime where handedness reversal of counterpart modes occurs. A condition is identified under which optical activity offsets structural chirality, rendering the medium simply birefringent.Comment: 14 pages, 6 figure

    An adaptive shell element for explicit dynamic analysis of failure in laminated composites Part 1: Adaptive kinematics and numerical implementation

    Get PDF
    To introduce more fibre-reinforced polymers in cars, the automotive industry is strongly dependent on efficient modelling tools to predict the correct energy absorption in crash simulations. In this context, an adaptive modelling technique shows great potential. However, as the critical energy absorption in a crash occurs over a very short period of time, and since the deformation behaviour is very complex, car crash simulations are usually performed using explicit dynamic finite element solvers. Therefore, any practical adaptive technique must be adapted to an explicit setting in a software available to the automotive companies. In this paper, we propose an adaptive method for explicit finite element analysis and describe its implementation in the commercial finite element solver LS-DYNA. The method allows for both so-called weak discontinuities (discontinuities in strain), which are crucial for accurate stress and intralaminar damage predictions, and strong discontinuities (discontinuities in displacements), needed for a proper representation of growing delamination cracks. In particular, we detail the implementation of the proposed method into LS-DYNA and also how we propose to remedy the non-physical oscillations arising from the implementation of the adaptive scheme in a explicit dynamic setting. The paper is concluded with numerical examples where we demonstrate the potential for the adaptive approach and also perform a detailed study on its accuracy and stability

    Tailoring modal properties of inhibited-coupling guiding fibers by cladding modification

    Get PDF
    Understanding cladding properties is crucial for designing microstructured optical fibers. This is particularly acute for Inhibited-Coupling guiding fibers because of the reliance of their core guidance on the core and cladding mode-field overlap integral. Consequently, careful planning of the fiber cladding parameters allows obtaining fibers with optimized characteristics such as low loss and broad transmission bandwidth. In this manuscript, we report on how one can tailor the modal properties of hollow-core photonic crystal fibers by adequately modifying the fiber cladding. We show that the alteration of the position of the tubular fibers cladding tubes can alter the loss hierarchy of the modes in these fibers, and exhibit salient polarization propriety. In this context, we present two fibers with different cladding structures which favor propagation of higher order core modes \u2013 namely LP11 and LP21 modes. Additionally, we provide discussions on mode transformations in these fibers and show that one can obtain uncommon intensity and polarization profiles at the fiber output. This allows the fiber to act as a mode intensity and polarization shaper. We envisage this novel concept can be useful for a variety of applications such as hollow core fiber based atom optics, atom-surface physics, sensing and nonlinear optics

    Moyal star product approach to the Bohr-Sommerfeld approximation

    Full text link
    The Bohr-Sommerfeld approximation to the eigenvalues of a one-dimensional quantum Hamiltonian is derived through order 2\hbar^2 (i.e., including the first correction term beyond the usual result) by means of the Moyal star product. The Hamiltonian need only have a Weyl transform (or symbol) that is a power series in \hbar, starting with 0\hbar^0, with a generic fixed point in phase space. The Hamiltonian is not restricted to the kinetic-plus-potential form. The method involves transforming the Hamiltonian to a normal form, in which it becomes a function of the harmonic oscillator Hamiltonian. Diagrammatic and other techniques with potential applications to other normal form problems are presented for manipulating higher order terms in the Moyal series.Comment: 27 pages, no figure

    Systems analysis of metabolism in the pathogenic trypanosomatid Leishmania major

    Get PDF
    Systems analyses have facilitated the characterization of metabolic networks of several organisms. We have reconstructed the metabolic network of Leishmania major, a poorly characterized organism that causes cutaneous leishmaniasis in mammalian hosts. This network reconstruction accounts for 560 genes, 1112 reactions, 1101 metabolites and 8 unique subcellular localizations. Using a systems-based approach, we hypothesized a comprehensive set of lethal single and double gene deletions, some of which were validated using published data with approximately 70% accuracy. Additionally, we generated hypothetical annotations to dozens of previously uncharacterized genes in the L. major genome and proposed a minimal medium for growth. We further demonstrated the utility of a network reconstruction with two proof-of-concept examples that yielded insight into robustness of the network in the presence of enzymatic inhibitors and delineation of promastigote/amastigote stage-specific metabolism. This reconstruction and the associated network analyses of L. major is the first of its kind for a protozoan. It can serve as a tool for clarifying discrepancies between data sources, generating hypotheses that can be experimentally validated and identifying ideal therapeutic targets

    Insulin trafficking in a glucose responsive engineered human liver cell line is regulated by the interaction of ATP-sensitive potassium channels and voltage- gated calcium channels

    Full text link
    Type I diabetes is caused by the autoimmune destruction of pancreatic beta (â) cells [1]. Current treatment requires multiple daily injections of insulin to control blood glucose levels. Tight glucose control lowers, but does not eliminate, the onset of diabetic complications, which greatly reduce the quality and longevity of life for patients. Transplantation of pancreatic tissue as a treatment is restricted by the scarcity of donors and the requirement for lifelong immunosuppression to preserve the graft, which carries adverse side-effects. This is of particular concern as Type 1 diabetes predominantly affects children. Lack of glucose control could be overcome by genetically engineering "an artificial â-cell" that is capable of synthesising, storing and secreting insulin in response to metabolic signals. The donor cell type must be readily accessible and capable of being engineered to synthesise, process, store and secrete insulin under physiological conditions

    Life history and chemical ecology of the Warrior wasp Synoeca septentrionalis (Hymenoptera : Vespidae, Epiponini)

    Get PDF
    Swarm-founding ‘Warrior wasps’ (Synoeca spp.) are found throughout the tropical regions of South America, are much feared due to their aggressive nest defence and painful sting. There are only five species of Synoeca, all construct distinctive nests that consist of a single sessile comb built onto the surface of a tree or rock face, which is covered by a ribbed envelope. Although locally common, research into this group is just starting. We studied eight colonies of Synoeca septentrionalis, a species recently been described from Brazil. A new colony is established by a swarm of 52 to 140 adults that constructs a colony containing around 200 brood cells. The largest colony collected containing 865 adults and over 1400 cells. The number of queen’s present among the eight colonies varied between 3 and 58 and no clear association between colony development and queen number was detected. Workers and queens were morphologically indistinguishable, but differences in their cuticular hydrocarbons were detected, particularly in their (Z)-9-alkenes. The simple cuticular profile, multiple queens, large size and small number of species makes the ‘Warrior wasps’ an excellent model group for further chemical ecology studies of swarm-founding wasps
    corecore