3 research outputs found

    Investigation of current models of care for genetic heart disease in Australia: A national clinical audit

    No full text
    Background: This sub-study of the Australian Genomics Cardiovascular Genetic Disorders Flagship sought to conduct the first nation-wide audit in Australia to establish the current practices across cardiac genetics clinics. Method: An audit of records of patients with a suspected genetic heart disease (cardiomyopathy, primary arrhythmia, autosomal dominant congenital heart disease) who had a cardiac genetics consultation between 1st January 2016 and 31 July 2018 and were offered a diagnostic genetic test. Results: This audit included 536 records at multidisciplinary cardiac genetics clinics from 11 public tertiary hospitals across five Australian states. Most genetic consultations occurred in a clinic setting (90%), followed by inpatient (6%) and Telehealth (4%). Queensland had the highest proportion of Telehealth consultations (9% of state total). Sixty-six percent of patients had a clinical diagnosis of a cardiomyopathy, 28% a primary arrhythmia, and 0.7% congenital heart disease. The reason for diagnosis was most commonly as a result of investigations of symptoms (73%). Most patients were referred by a cardiologist (85%), followed by a general practitioner (9%) and most genetic tests were funded by the state Genetic Health Service (73%). Nationally, 29% of genetic tests identified a pathogenic or likely pathogenic gene variant; 32% of cardiomyopathies, 26% of primary arrhythmia syndromes, and 25% of congenital heart disease. Conclusion: We provide important information describing the current models of care for genetic heart diseases throughout Australia. These baseline data will inform the implementation and impact of whole genome sequencing in the Australian healthcare landscape

    Heterozygous ANKRD17 loss-of-function variants cause a syndrome with intellectual disability, speech delay, and dysmorphism

    No full text
    ANKRD17 is an ankyrin repeat-containing protein thought to play a role in cell cycle progression, whose ortholog in Drosophila functions in the Hippo pathway as a co-factor of Yorkie. Here, we delineate a neurodevelopmental disorder caused by de novo heterozygous ANKRD17 variants. The mutational spectrum of this cohort of 34 individuals from 32 families is highly suggestive of haploinsufficiency as the underlying mechanism of disease, with 21 truncating or essential splice site variants, 9 missense variants, 1 in-frame insertion-deletion, and 1 microdeletion (1.16 Mb). Consequently, our data indicate that loss of ANKRD17 is likely the main cause of phenotypes previously associated with large multi-gene chromosomal aberrations of the 4q13.3 region. Protein modeling suggests that most of the missense variants disrupt the stability of the ankyrin repeats through alteration of core structural residues. The major phenotypic characteristic of our cohort is a variable degree of developmental delay/intellectual disability, particularly affecting speech, while additional features include growth failure, feeding difficulties, non-specific MRI abnormalities, epilepsy and/or abnormal EEG, predisposition to recurrent infections (mostly bacterial), ophthalmological abnormalities, gait/balance disturbance, and joint hypermobility. Moreover, many individuals shared similar dysmorphic facial features. Analysis of single-cell RNA-seq data from the developing human telencephalon indicated ANKRD17 expression at multiple stages of neurogenesis, adding further evidence to the assertion that damaging ANKRD17 variants cause a neurodevelopmental disorder
    corecore