131,990 research outputs found
Ceramic wiring board increases packaging density of electronic modules
Ceramic multilayer wiring board interconnects large scale integration /LSI/ modules which dissipate nearly 2W/cc. Extremely high packaging density is possible by application of alumina cover hermetically sealed to board. Signal interconnections are completely dependent on transfer heat between layers
On quantum effects near the liquid-vapor transition in helium
The liquid-vapor transition in He-3 and He-4 is investigated by means of
path-integral molecular dynamics and the quantum virial expansion. Both methods
are applied to the critical isobar and the critical isochore. While previous
path-integral simulations have mainly considered the lambda transition and
superfluid regime in He-4, we focus on the vicinity of the critical point and
obtain good agreement with experimental results for the molar volume and the
internal energy down to subcritical temperatures. We find that an effective
classical potential that properly describes the two-particle radial
distribution function exhibits a strong temperature dependence near the
critical temperature. This contrasts with the behavior of essentially classical
systems like xenon, where the effective potential is independent of
temperature. It is conjectured that, owing to this difference in behavior
between classical and quantum-mechanical systems, the crossover behavior
observed for helium in the vicinity of the critical point differs qualitatively
from that of other simple liquids
Long Duration Exposure Facility (LDEF) space environments overview
The Long Duration Exposure Facility (LDEF) was retrieved from Earth orbit in January 1990 after spending almost six years in space. It had flown in a near-circular orbit with an inclination of 28.5 degrees. Initially, the orbit altitude was approximately 257 nautical miles; however, when the LDEF was retrieved the orbit altitude had decayed to approximately 179 nautical miles. The LDEF was passively stabilized about three axes while in free flight, making it an ideal platform for exposing experiments which were measuring the environments of near-Earth space and investigating the long-term effects of these environments on spacecraft. A brief overview of the encountered environments that were of most interest to the LDEF investigators is presented
Keck Observations of the Hidden Quasar IRAS P09104+4109
We present imaging and spectro- polarimetric observations of the
ultraluminous infrared galaxy IRAS P09104+4109 using the Keck 10-m Telescope.
We detect the clear presence of broad Hb, Hg, and MgII 2800 emission lines in
the polarized flux spectra of the nucleus and of an extranuclear emission
region ~ 4" away, confirming the presence of a hidden central quasar. The
polarization of the broad Mg II emission line is high (~ 29%), consistent with
the remarkably high polarization (~ 30%-40%) observed in the extended continuum
emission. The narrow emission lines are polarized in a stratified fashion, with
the high ionization lines being polarized 0.7%-1.7% and [O II] essentially
unpolarized. The line polarizations are positively correlated with critical
density, ionization potential, and velocity width of the emission lines. This
indicates that the NLR may be partially shadowed by the putative torus, with
the higher ionization lines originating closer to the nucleus. One notable
characteristic of the extranuclear knot is that all species of Fe are markedly
absent in its spectrum, while they appear prominently in the nucleus. Our
favored interpretation is that there is a large amount of dust in the
extranuclear regions, allowing gaseous refractory metals to deposit. The
extended emission regions are most likely material shredded from nearby cluster
members and not gas condensed from the cooling flow or expelled from the
obscured quasar. Our data provide strong evidence for matter-bounded clouds in
addition to ionization-bounded clouds in the NLR. Ionization by pure velocity
shocks can be ruled out. Shocks with photoionizing precursors may be present,
but are probably not a dominant contributor to the energy input.Comment: 32 pages, including 9 figs and 2 tables, to be published in the
Astronomical Journa
Welding of commercial base plates is investigated
Investigation of aluminum alloy welds reveals that the combinations of metallic elements with hydrogen are not capable of producing weld porosity themselves, rather they tend to increase the amount of porosity only in the presence of arc contamination by water vapor
Toward a unified PNT, Part 1: Complexity and context: Key challenges of multisensor positioning
The next generation of navigation and positioning systems must provide greater accuracy and reliability in a range of challenging environments to meet the needs of a variety of mission-critical applications. No single navigation technology is robust enough to meet these requirements on its own, so a multisensor solution is required. Known environmental features, such as signs, buildings, terrain height variation, and magnetic anomalies, may or may not be available for positioning. The system could be stationary, carried by a pedestrian, or on any type of land, sea, or air vehicle. Furthermore, for many applications, the environment and host behavior are subject to change. A multi-sensor solution is thus required. The expert knowledge problem is compounded by the fact that different modules in an integrated navigation system are often supplied by different organizations, who may be reluctant to share necessary design information if this is considered to be intellectual property that must be protected
Cavitation Inception in Spool Valves
Cavitation has been investigated in directional control valves in order to identify damage mechanisms characteristic of components of aircraft hydraulic systems. Tests have been conducted in a representative metal spool valve and in a model three times larger. Data taken under noncavitating conditions with both valves showed that the position of the high-velocity annular jet shifts orientation, depending upon valve opening and Reynolds number. By means of high-frequency response pressure transducers strategically placed in the valve chamber cavitation could be sensed by the correlation of noise with a cavitation index. The onset of cavitation can be detected by comparing energy spectra for a fixed valve opening and a constant discharge. Another sensitive indicator of cavitation inception is the ratio of cavitating to noncavitating spectral densities. The incipient cavitation number as defined in this investigation is correlated with the Reynolds number for both valves
- …