6 research outputs found

    Effectiveness of the Chest Strap Electrocardiogram to Detect Atrial Fibrillation

    Get PDF
    Atrial fibrillation (AF) is a significant cause of cardioembolic strokes. AF is often symptomless and intermittent, making its detection challenging. The aim of this study was to assess the possibility to use a chest strap (Suunto Movesense) to detect AF both by cardiologists and automated algorithms. A single channel electrocardiogram (ECG) from a chest strap of 220 patients (107 AF and 111 sinus rhythm SR with 2 inconclusive rhythms) were analyzed by 2 cardiologists (Doc1 and Doc2) and 2 different algorithms (COSEn and AFE-vidence). A 3-lead Holter served as the gold standard ECG for rhythm analysis. Both cardiologists evaluated the quality of the chest strap ECG to be superior to the quality of the Holter ECG; pPeer reviewe

    Continuous 24-h Photoplethysmogram Monitoring Enables Detection of Atrial Fibrillation

    Get PDF
    Aim: Atrial fibrillation (AF) detection is challenging because it is often asymptomatic and paroxysmal. We evaluated continuous photoplethysmogram (PPG) for signal quality and detection of AF.Methods: PPGs were recorded using a wrist-band device in 173 patients (76 AF, 97 sinus rhythm, SR) for 24 h. Simultaneously recorded 3-lead ambulatory ECG served as control. The recordings were split into 10-, 20-, 30-, and 60-min time-frames. The sensitivity, specificity, and F1-score of AF detection were evaluated for each time-frame. AF alarms were generated to simulate continuous AF monitoring. Sensitivities, specificities, and positive predictive values (PPVs) of the alarms were evaluated. User experiences of PPG and ECG recordings were assessed. The study was registered in the Clinical Trials database (NCT03507335).Results: The quality of PPG signal was better during night-time than in daytime (67.3 +/- 22.4% vs. 30.5 +/- 19.4%, p < 0.001). The 30-min time-frame yielded the highest F1-score (0.9536), identifying AF correctly in 72/76 AF patients (sensitivity 94.7%), only 3/97 SR patients receiving a false AF diagnosis (specificity 96.9%). The sensitivity and PPV of the simulated AF alarms were 78.2 and 97.2% at night, and 49.3 and 97.0% during the daytime. 82% of patients were willing to use the device at home.Conclusion: PPG wrist-band provided reliable AF identification both during daytime and night-time. The PPG data's quality was better at night. The positive user experience suggests that wearable PPG devices could be feasible for continuous rhythm monitoring.Peer reviewe

    Diagnostic Performance, Triage Safety, and Usability of a Clinical Decision Support System Within a University Hospital Emergency Department: Algorithm Performance and Usability Study

    No full text
    Abstract BackgroundComputerized clinical decision support systems (CDSSs) are increasingly adopted in health care to optimize resources and streamline patient flow. However, they often lack scientific validation against standard medical care. ObjectiveThe purpose of this study was to assess the performance, safety, and usability of a CDSS in a university hospital emergency department setting in Kuopio, Finland. MethodsPatients entering the emergency department were asked to voluntarily participate in this study. Patients aged 17 years or younger, patients with cognitive impairments, and patients who entered the unit in an ambulance or with the need for immediate care were excluded. Patients completed the CDSS web-based form and usability questionnaire when waiting for the triage nurse’s evaluation. The CDSS data were anonymized and did not affect the patients’ usual evaluation or treatment. Retrospectively, 2 medical doctors evaluated the urgency of each patient’s condition by using the triage nurse’s information, and urgent and nonurgent groups were created. The International Statistical Classification of Diseases, Tenth Revision ResultsIn total, our analyses included 248 patients. Regarding urgency, the mean sensitivities were 85% and 19%, respectively, for urgent and nonurgent cases when assessing the performance of CDSS evaluations in comparison to that of physicians. The mean sensitivities were 85% and 35%, respectively, when comparing the evaluations between the two physicians. Our CDSS did not miss any cases that were evaluated to be emergencies by physicians; thus, all emergency cases evaluated by physicians were evaluated as either urgent cases or emergency cases by the CDSS. In differential diagnosis, the CDSS had an exact match accuracy of 45.5% (97/213). The usability was good, with a mean System Usability Scale score of 78.2 (SD 16.8). ConclusionsIn a university hospital emergency department setting with a large real-world population, our CDSS was found to be equally as sensitive in urgent patient cases as physicians and was found to have an acceptable differential diagnosis accuracy, with good usability. These results suggest that this CDSS can be safely assessed further in a real-world setting. A CDSS could accelerate triage by providing patient-provided data in advance of patients’ initial consultations and categorize patient cases as urgent and nonurgent cases upon patients' arrival to the emergency department

    Wrist Band Photoplethysmography Autocorrelation Analysis Enables Detection of Atrial Fibrillation Without Pulse Detection

    Get PDF
    Atrial fibrillation is often asymptomatic and intermittent making its detection challenging. A photoplethysmography (PPG) provides a promising option for atrial fibrillation detection. However, the shapes of pulse waves vary in atrial fibrillation decreasing pulse and atrial fibrillation detection accuracy. This study evaluated ten robust photoplethysmography features for detection of atrial fibrillation. The study was a national multi-center clinical study in Finland and the data were combined from two broader research projects (NCT03721601, URL: https://clinicaltrials.gov/ct2/show/NCT03721601 and NCT03753139, URL: https://clinicaltrials.gov/ct2/show/NCT03753139). A photoplethysmography signal was recorded with a wrist band. Five pulse interval variability, four amplitude features and a novel autocorrelation-based morphology feature were calculated and evaluated independently as predictors of atrial fibrillation. A multivariate predictor model including only the most significant features was established. The models were 10-fold cross-validated. 359 patients were included in the study (atrial fibrillation n = 169, sinus rhythm n = 190). The autocorrelation univariate predictor model detected atrial fibrillation with the highest area under receiver operating characteristic curve (AUC) value of 0.982 (sensitivity 95.1%, specificity 93.7%). Autocorrelation was also the most significant individual feature (p < 0.00001) in the multivariate predictor model, detecting atrial fibrillation with AUC of 0.993 (sensitivity 96.4%, specificity 96.3%). Our results demonstrated that the autocorrelation independently detects atrial fibrillation reliably without the need of pulse detection. Combining pulse wave morphology-based features such as autocorrelation with information from pulse-interval variability it is possible to detect atrial fibrillation with high accuracy with a commercial wrist band. Photoplethysmography wrist bands accompanied with atrial fibrillation detection algorithms utilizing autocorrelation could provide a computationally very effective and reliable wearable monitoring method in screening of atrial fibrillation.Peer reviewe

    Automatic Mobile Health Arrhythmia Monitoring for the Detection of Atrial Fibrillation: Prospective Feasibility, Accuracy, and User Experience Study

    No full text
    BackgroundAtrial fibrillation (AF) is the most common tachyarrhythmia and associated with a risk of stroke. The detection and diagnosis of AF represent a major clinical challenge due to AF’s asymptomatic and intermittent nature. Novel consumer-grade mobile health (mHealth) products with automatic arrhythmia detection could be an option for long-term electrocardiogram (ECG)-based rhythm monitoring and AF detection. ObjectiveWe evaluated the feasibility and accuracy of a wearable automated mHealth arrhythmia monitoring system, including a consumer-grade, single-lead heart rate belt ECG device (heart belt), a mobile phone application, and a cloud service with an artificial intelligence (AI) arrhythmia detection algorithm for AF detection. The specific aim of this proof-of-concept study was to test the feasibility of the entire sequence of operations from ECG recording to AI arrhythmia analysis and ultimately to final AF detection. MethodsPatients (n=159) with an AF (n=73) or sinus rhythm (n=86) were recruited from the emergency department. A single-lead heart belt ECG was recorded for 24 hours. Simultaneously registered 3-lead ECGs (Holter) served as the gold standard for the final rhythm diagnostics and as a reference device in a user experience survey with patients over 65 years of age (high-risk group). ResultsThe heart belt provided a high-quality ECG recording for visual interpretation resulting in 100% accuracy, sensitivity, and specificity of AF detection. The accuracy of AF detection with the automatic AI arrhythmia detection from the heart belt ECG recording was also high (97.5%), and the sensitivity and specificity were 100% and 95.4%, respectively. The correlation between the automatic estimated AF burden and the true AF burden from Holter recording was >0.99 with a mean burden error of 0.05 (SD 0.26) hours. The heart belt demonstrated good user experience and did not significantly interfere with the patient’s daily activities. The patients preferred the heart belt over Holter ECG for rhythm monitoring (85/110, 77% heart belt vs 77/109, 71% Holter, P=.049). ConclusionsA consumer-grade, single-lead ECG heart belt provided good-quality ECG for rhythm diagnosis. The mHealth arrhythmia monitoring system, consisting of heart-belt ECG, a mobile phone application, and an automated AF detection achieved AF detection with high accuracy, sensitivity, and specificity. In addition, the mHealth arrhythmia monitoring system showed good user experience. Trial RegistrationClinicalTrials.gov NCT03507335; https://clinicaltrials.gov/ct2/show/NCT0350733
    corecore