8 research outputs found

    FAIR-compliant clinical, radiomics and DICOM metadata of RIDER, interobserver, Lung1 and head-Neck1 TCIA collections

    Get PDF
    Purpose: One of the most frequently cited radiomics investigations showed that features automatically extracted from routine clinical images could be used in prognostic modeling. These images have been made publicly accessible via The Cancer Imaging Archive (TCIA). There have been numerous requests for additional explanatory metadata on the following datasets — RIDER, Interobserver, Lung1, and Head–Neck1. To support repeatability, reproducibility, generalizability, and transparency in radiomics research, we publish the subjects’ clinical data, extracted radiomics features, and digital imaging and communications in medicine (DICOM) headers of these four datasets with descriptive metadata, in order to be more compliant with findable, accessible, interoperable, and reusable (FAIR) data management principles. Acquisition and validation methods: Overall survival time intervals were updated using a national citizens registry after internal ethics board approval. Spatial offsets of the primary gross tumor volume (GTV) regions of interest (ROIs) associated with the Lung1 CT series were improved on the TCIA. GTV radiomics features were extracted using the open-source Ontology-Guided Radiomics Analysis Workflow (O-RAW). We reshaped the output of O-RAW to map features and extraction settings to the latest version of Radiomics Ontology, so as to be consistent with the Image Biomarker Standardization Initiative (IBSI). Digital imaging and communications in medicine metadata was extracted using a research version of Semantic DICOM (SOHARD, GmbH, Fuerth; Germany). Subjects’ clinical data were described with metadata using the Radiation Oncology Ontology. All of the above were published in Resource Descriptor Format (RDF), that is, triples. Example SPARQL queries are shared with the reader to use on the online triples archive, which are intended to illustrate how to exploit this data submission. Data format: The accumulated RDF data are publicly accessible through a SPARQL endpoint where the triples are archived. The endpoint is remotely queried through a graph database web application at http://sparql.cancerdata.org. SPARQL queries are intrinsically federated, such that we can efficiently cross-reference clinical, DICOM, and radiomics data within a single query, while being agnostic to the original data format and coding system. The feder

    Reproducible radiomics through automated machine learning validated on twelve clinical applications

    Get PDF
    Radiomics uses quantitative medical imaging features to predict clinical outcomes. Currently, in a new clinical application, findingthe optimal radiomics method out of the wide range of available options has to be done manually through a heuristic trial-anderror process. In this study we propose a framework for automatically optimizing the construction of radiomics workflows perapplication. To this end, we formulate radiomics as a modular workflow and include a large collection of common algorithms foreach component. To optimize the workflow per application, we employ automated machine learning using a random search andensembling. We evaluate our method in twelve different clinical applications, resulting in the following area under the curves: 1)liposarcoma (0.83); 2) desmoid-type fibromatosis (0.82); 3) primary liver tumors (0.80); 4) gastrointestinal stromal tumors (0.77);5) colorectal liver metastases (0.61); 6) melanoma metastases (0.45); 7) hepatocellular carcinoma (0.75); 8) mesenteric fibrosis(0.80); 9) prostate cancer (0.72); 10) glioma (0.71); 11) Alzheimer’s disease (0.87); and 12) head and neck cancer (0.84). Weshow that our framework has a competitive performance compared human experts, outperforms a radiomics baseline, and performssimilar or superior to Bayesian optimization and more advanced ensemble approaches. Concluding, our method fully automaticallyoptimizes the construction of radiomics workflows, thereby streamlining the search for radiomics biomarkers in new applications.To facilitate reproducibility and future research, we publicly release six datasets, the software implementation of our framework,and the code to reproduce this study

    Future-ai:International consensus guideline for trustworthy and deployable artificial intelligence in healthcare

    Get PDF
    Despite major advances in artificial intelligence (AI) for medicine and healthcare, the deployment and adoption of AI technologies remain limited in real-world clinical practice. In recent years, concerns have been raised about the technical, clinical, ethical and legal risks associated with medical AI. To increase real world adoption, it is essential that medical AI tools are trusted and accepted by patients, clinicians, health organisations and authorities. This work describes the FUTURE-AI guideline as the first international consensus framework for guiding the development and deployment of trustworthy AI tools in healthcare. The FUTURE-AI consortium was founded in 2021 and currently comprises 118 inter-disciplinary experts from 51 countries representing all continents, including AI scientists, clinicians, ethicists, and social scientists. Over a two-year period, the consortium defined guiding principles and best practices for trustworthy AI through an iterative process comprising an in-depth literature review, a modified Delphi survey, and online consensus meetings. The FUTURE-AI framework was established based on 6 guiding principles for trustworthy AI in healthcare, i.e. Fairness, Universality, Traceability, Usability, Robustness and Explainability. Through consensus, a set of 28 best practices were defined, addressing technical, clinical, legal and socio-ethical dimensions. The recommendations cover the entire lifecycle of medical AI, from design, development and validation to regulation, deployment, and monitoring. FUTURE-AI is a risk-informed, assumption-free guideline which provides a structured approach for constructing medical AI tools that will be trusted, deployed and adopted in real-world practice. Researchers are encouraged to take the recommendations into account in proof-of-concept stages to facilitate future translation towards clinical practice of medical AI

    FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare

    Full text link
    Despite major advances in artificial intelligence (AI) for medicine and healthcare, the deployment and adoption of AI technologies remain limited in real-world clinical practice. In recent years, concerns have been raised about the technical, clinical, ethical and legal risks associated with medical AI. To increase real world adoption, it is essential that medical AI tools are trusted and accepted by patients, clinicians, health organisations and authorities. This work describes the FUTURE-AI guideline as the first international consensus framework for guiding the development and deployment of trustworthy AI tools in healthcare. The FUTURE-AI consortium was founded in 2021 and currently comprises 118 inter-disciplinary experts from 51 countries representing all continents, including AI scientists, clinicians, ethicists, and social scientists. Over a two-year period, the consortium defined guiding principles and best practices for trustworthy AI through an iterative process comprising an in-depth literature review, a modified Delphi survey, and online consensus meetings. The FUTURE-AI framework was established based on 6 guiding principles for trustworthy AI in healthcare, i.e. Fairness, Universality, Traceability, Usability, Robustness and Explainability. Through consensus, a set of 28 best practices were defined, addressing technical, clinical, legal and socio-ethical dimensions. The recommendations cover the entire lifecycle of medical AI, from design, development and validation to regulation, deployment, and monitoring. FUTURE-AI is a risk-informed, assumption-free guideline which provides a structured approach for constructing medical AI tools that will be trusted, deployed and adopted in real-world practice. Researchers are encouraged to take the recommendations into account in proof-of-concept stages to facilitate future translation towards clinical practice of medical AI

    Optimization of Preoperative Lymph Node Staging in Patients with Muscle-Invasive Bladder Cancer Using Radiomics on Computed Tomography

    No full text
    Approximately 25% of the patients with muscle-invasive bladder cancer (MIBC) who are clinically node negative have occult lymph node metastases at radical cystectomy (RC) and pelvic lymph node dissection. The aim of this study was to evaluate preoperative CT-based radiomics to differentiate between pN+ and pN0 disease in patients with clinical stage cT2-T4aN0-N1M0 MIBC. Patients with cT2-T4aN0-N1M0 MIBC, of whom preoperative CT scans and pathology reports were available, were included from the prospective, multicenter CirGuidance trial. After manual segmentation of the lymph nodes, 564 radiomics features were extracted. A combination of different machine-learning methods was used to develop various decision models to differentiate between patients with pN+ and pN0 disease. A total of 209 patients (159 pN0; 50 pN+) were included, with a total of 3153 segmented lymph nodes. None of the individual radiomics features showed significant differences between pN+ and pN0 disease, and none of the radiomics models performed substantially better than random guessing. Hence, CT-based radiomics does not contribute to differentiation between pN+ and pN0 disease in patients with cT2-T4aN0-N1M0 MIBC

    Differential Diagnosis and Molecular Stratification of Gastrointestinal Stromal Tumors on CT Images Using a Radiomics Approach

    Get PDF
    Treatment planning of gastrointestinal stromal tumors (GISTs) includes distinguishing GISTs from other intra-abdominal tumors and GISTs' molecular analysis. The aim of this study was to evaluate radiomics for distinguishing GISTs from other intra-abdominal tumors, and in GISTs, predict the c-KIT, PDGFRA, BRAF mutational status, and mitotic index (MI). Patients diagnosed at the Erasmus MC between 2004 and 2017, with GIST or non-GIST intra-abdominal tumors and a contrast-enhanced venous-phase CT, were retrospectively included. Tumors were segmented, from which 564 image features were extracted. Prediction models were constructed using a combination of machine learning approaches. The evaluation was performed in a 100 × random-split cross-validation. Model performance was compared to that of three radiologists. One hundred twenty-five GISTs and 122 non-GISTs were included. The GIST vs. non-GIST radiomics model had a mean area under the curve (AUC) of 0.77. Three radiologists had an AUC of 0.69, 0.76, and 0.84, respectively. The radiomics model had an AUC of 0.52 for c-KIT, 0.56 for c-KIT exon 11, and 0.52 for the MI. The numbers of PDGFRA, BRAF, and other c-KIT mutations were too low for analysis. Our radiomics model was able to distinguish GISTs from non-GISTs with a performance similar to three radiologists, but less observer dependent. Therefore, it may aid in the early diagnosis of GIST, facilitating rapid referral to specialized treatment centers. As the model was not able to predict any genetic or molecular features, it cannot aid in treatment planning yet

    Independent validation of CT radiomics models in colorectal liver metastases:predicting local tumour progression after ablation

    Get PDF
    OBJECTIVES: Independent internal and external validation of three previously published CT-based radiomics models to predict local tumor progression (LTP) after thermal ablation of colorectal liver metastases (CRLM). MATERIALS AND METHODS: Patients with CRLM treated with thermal ablation were collected from two institutions to collect a new independent internal and external validation cohort. Ablation zones (AZ) were delineated on portal venous phase CT 2-8 weeks post-ablation. Radiomics features were extracted from the AZ and a 10 mm peri-ablational rim (PAR) of liver parenchyma around the AZ. Three previously published prediction models (clinical, radiomics, combined) were tested without retraining. LTP was defined as new tumor foci appearing next to the AZ up to 24 months post-ablation. RESULTS: The internal cohort included 39 patients with 68 CRLM and the external cohort 52 patients with 78 CRLM. 34/146 CRLM developed LTP after a median follow-up of 24 months (range 5-139). The median time to LTP was 8 months (range 2-22). The combined clinical-radiomics model yielded a c-statistic of 0.47 (95%CI 0.30-0.64) in the internal cohort and 0.50 (95%CI 0.38-0.62) in the external cohort, compared to 0.78 (95%CI 0.65-0.87) in the previously published original cohort. The radiomics model yielded c-statistics of 0.46 (95%CI 0.29-0.63) and 0.39 (95%CI 0.28-0.52), and the clinical model 0.51 (95%CI 0.34-0.68) and 0.51 (95%CI 0.39-0.63) in the internal and external cohort, respectively. CONCLUSION: The previously published results for prediction of LTP after thermal ablation of CRLM using clinical and radiomics models were not reproducible in independent internal and external validation. CLINICAL RELEVANCE STATEMENT: Local tumour progression after thermal ablation of CRLM cannot yet be predicted with the use of CT radiomics of the ablation zone and peri-ablational rim. These results underline the importance of validation of radiomics results to test for reproducibility in independent cohorts. KEY POINTS: • Previous research suggests CT radiomics models have the potential to predict local tumour progression after thermal ablation in colorectal liver metastases, but independent validation is lacking. • In internal and external validation, the previously published models were not able to predict local tumour progression after ablation. • Radiomics prediction models should be investigated in independent validation cohorts to check for reproducibility

    Data infrastructures for AI in medical imaging: a report on the experiences of five EU projects

    Get PDF
    Abstract Artificial intelligence (AI) is transforming the field of medical imaging and has the potential to bring medicine from the era of ‘sick-care’ to the era of healthcare and prevention. The development of AI requires access to large, complete, and harmonized real-world datasets, representative of the population, and disease diversity. However, to date, efforts are fragmented, based on single–institution, size-limited, and annotation-limited datasets. Available public datasets (e.g., The Cancer Imaging Archive, TCIA, USA) are limited in scope, making model generalizability really difficult. In this direction, five European Union projects are currently working on the development of big data infrastructures that will enable European, ethically and General Data Protection Regulation-compliant, quality-controlled, cancer-related, medical imaging platforms, in which both large-scale data and AI algorithms will coexist. The vision is to create sustainable AI cloud-based platforms for the development, implementation, verification, and validation of trustable, usable, and reliable AI models for addressing specific unmet needs regarding cancer care provision. In this paper, we present an overview of the development efforts highlighting challenges and approaches selected providing valuable feedback to future attempts in the area. Key points • Artificial intelligence models for health imaging require access to large amounts of harmonized imaging data and metadata. • Main infrastructures adopted either collect centrally anonymized data or enable access to pseudonymized distributed data. • Developing a common data model for storing all relevant information is a challenge. • Trust of data providers in data sharing initiatives is essential. • An online European Union meta-tool-repository is a necessity minimizing effort duplication for the various projects in the area
    corecore