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Abstract
Treatment planning of gastrointestinal stromal tumors (GISTs) includes distinguishing GISTs from other intra-abdominal 
tumors and GISTs’ molecular analysis. The aim of this study was to evaluate radiomics for distinguishing GISTs from other 
intra-abdominal tumors, and in GISTs, predict the c-KIT, PDGFRA, BRAF mutational status, and mitotic index (MI). Patients 
diagnosed at the Erasmus MC between 2004 and 2017, with GIST or non-GIST intra-abdominal tumors and a contrast-
enhanced venous-phase CT, were retrospectively included. Tumors were segmented, from which 564 image features were 
extracted. Prediction models were constructed using a combination of machine learning approaches. The evaluation was 
performed in a 100 × random-split cross-validation. Model performance was compared to that of three radiologists. One 
hundred twenty-five GISTs and 122 non-GISTs were included. The GIST vs. non-GIST radiomics model had a mean area 
under the curve (AUC) of 0.77. Three radiologists had an AUC of 0.69, 0.76, and 0.84, respectively. The radiomics model 
had an AUC of 0.52 for c-KIT, 0.56 for c-KIT exon 11, and 0.52 for the MI. The numbers of PDGFRA, BRAF, and other 
c-KIT mutations were too low for analysis. Our radiomics model was able to distinguish GISTs from non-GISTs with a 
performance similar to three radiologists, but less observer dependent. Therefore, it may aid in the early diagnosis of GIST, 
facilitating rapid referral to specialized treatment centers. As the model was not able to predict any genetic or molecular 
features, it cannot aid in treatment planning yet.
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Introduction

Gastrointestinal stromal tumors (GISTs) are rare mesenchy-
mal tumors of the gastrointestinal tract, with an estimated 
incidence between 10 and 15 cases per million persons per 
year [1, 2]. The most common tumor locations are the stom-
ach (56%) and the small intestine (32%) [2]. Differentiating 
GISTs from other intra-abdominal tumors (non-GISTs) is 
highly important for early diagnosis and treatment planning 
[3]. Due to the rarity of GISTs, establishing the correct diag-
nosis can be challenging. Computed tomography (CT) is 
the imaging modality of choice in GIST diagnosis [4], but 
assessment through an invasive tissue biopsy is generally 
required [5]. A non-invasive and quicker method may aid 
in the early assessment of GISTs, allowing rapid transfer of 
such patients to specialized treatment centers.

Treatment planning of GISTs is based on their molecular 
profile. The mitotic index (MI) reflects the proliferative rate 
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of GISTs, correlates with survival and risk of metastatic 
spread [6], and determines the use of adjuvant systemic 
treatment. Treatment decisions are also based on the GISTs’ 
mutational status. PDGFRA exon 18 mutated (Asp842Val) 
GISTs are resistant to imatinib [7]. GISTs with a c-KIT exon 
11 mutation have shown a greater sensitivity for imatinib 
than those with a c-KIT exon 9 mutations [3]. The MI and 
these genetic mutations are currently assessed through an 
invasive tissue biopsy. Prediction of such molecular charac-
teristics based on imaging could guide treatment planning 
while awaiting the results of a final tissue biopsy.

Radiomics relates imaging features to molecular charac-
teristics in order to contribute to diagnosis, prognosis, and 
treatment decisions. Radiomics has shown promising results 
in risk stratification of GISTs [8–17], but has not been used 
to distinguish GISTs from non-GISTs nor to predict the 
molecular profile.

The aim of this study was to evaluate whether radiomics 
based on CT is capable of (1) differentiating GISTs from 
other intra-abdominal tumors resembling GISTs prior to 
treatment, i.e., the differential diagnosis and (2) predicting 
the presence and type of mutation (BRAF, PDGFRA, and 
c-KIT) and the MI of GISTs, i.e., the molecular analysis, 
also called “radiogenomics”.

Materials and Methods

Data Collection

Approval by the Erasmus MC institutional review board 
was obtained (MEC-2017–1187). Patients from our  
institute between 2004 and 2017 with a histopathologically 
proven primary GIST or intra-abdominal tumors resembling 
GIST with at least a contrast-enhanced venous-phase CT 
prior to treatment [3, 18] were retrospectively included. 
The cohort of intra-abdominal tumors resembling GISTs 
was composed of consecutive intra-abdominal benign and 
malignant spindle cell and epithelioid non-GIST soft tissue 
tumors [5]. Age at diagnosis, sex, and tumor location (based 
on radiology reports) were collected. The sample sizes of 
the non-GIST and the GIST cohort were matched. The non-
GIST subtypes were balanced, i.e., a similar number of  
patients per subtype was randomly included.

GISTs with a known mutation status and/or MI prior to 
therapy were included in the molecular analysis. Both were 
obtained from pathology reports. The mutation was catego-
rized as “absent” or “present” for each type (e.g., c-KIT) and 
subtype (e.g., c-KIT exon 11). The MI (expressed in high 
power fields (HPF), magnification 40 × , totaling 5mm2), 
determined on biopsy or excision material, was split into 
low (≤ 5/50 HPF) and high (> 5/50 HPF) [19]. An adjusted 
MI was calculated per 50 HPF when the MI was not counted 

per 50 HPF. As not all of these characteristics may have all 
been analyzed in all patients, if a specific mutation (e.g., 
c-KIT) or the MI was not stated in the pathology reports, 
this was categorized as “missing” and the patient was not 
included in the related radiomics analysis.

Radiomics

Figure  1 depicts the radiomics workflow. Tumors were 
manually segmented once by one of two clinicians under 
the supervision of a musculoskeletal radiologist (5 years of 
experience) using in-house developed software [20]. A sub-
set of 30 GISTs was segmented by both clinicians, in which 
inter-observer variability was evaluated through the pairwise 
Dice similarity coefficient (DSC), with a DSC > 0.70 indi-
cating good agreement [21]. For each lesion, 564 features 
quantifying intensity, shape, and texture were extracted using 
the PREDICT [22] (version 3.1.13) and PyRadiomics [23] 
(version 3.0.1) toolboxes (see Supplemental Material 1). The 
WORC toolbox (version 3.4.0) was used to create a deci-
sion model from the features [24–26]. In WORC, radiomics 
is formulated as a modular workflow consisting of multiple 
components, e.g., feature selection, resampling, and machine 
learning. For each component, a variety of commonly 
used algorithms and their associated hyperparameters are 
included. Using automated machine learning, WORC auto-
matically constructs and optimizes the radiomics workflow 
to determine which combination of algorithms and hyperpa-
rameters maximizes the prediction performance on the train-
ing set. The final model consists of an ensemble of the 100 
workflows performing best on the training set (for details, see 
Supplemental Material 2). The code for the feature extraction 
and model creation has been published open source [27].

Experimental Setup

Evaluation of all models was done through a 100 × random-
split cross-validation. In each iteration, the data was ran-
domly split into 80% for training and 20% for testing in a 
stratified manner (see Supplemental Fig. S1). Within the 
training set, the WORC model optimization was performed 
using an internal cross-validation (5 ×). Hence, all optimi-
zation was done on the training set to eliminate any risk of 
overfitting on the test set.

Performance was evaluated using the area under the 
curve (AUC) of the receiver operating characteristic 
(ROC) curve, balanced classification accuracy (BCA) 
[28], sensitivity, and specificity. The positive classes 
were defined as GIST, the presence of the mutations, and 
a high MI. The mean performance measures over the 100 
cross-validation iterations were computed, and their 95% 
confidence intervals (CIs) were constructed using the cor-
rected resampled t-test [29]. When plotting ROC curves, 
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confidence bands were constructed using fixed-width 
bands [30].

First, to evaluate the predictive value of imaging, a radi-
omics model based on imaging only was evaluated. To 
assess the predictive value of volume alone, an additional 
volume-only model was trained. Second, as radiologists 
frequently use age, sex, and location in the differential diag-
nosis, an additional model for the differential diagnosis was 
created based on radiomics, age, sex, and location.

Model Insight

The differences in feature values and CT acquisition param-
eters between the GIST and non-GIST cohorts were assessed 
using a Mann–Whitney U univariate statistical test for con-
tinuous variables, and a chi-square test for categorical vari-
ables. P-values of the features were corrected for multiple 
testing using the Bonferroni correction, i.e., multiplying the 
p-values by the number of tests. Values of p < 0.05 were con-
sidered statistically significant. For the statistically signifi-
cant acquisition parameters, the individual predictive value 
was assessed using the AUC.

To gain insight into the models, the patients were 
ranked from typical to atypical for both the GIST and 
non-GIST groups, based on the consistency of the model 

predictions. This was determined by the number of times 
(percentage) that a patient was classified correctly when 
included in the test set of a cross-validation iteration. Typi-
cal examples for each class consisted of the patients who 
were always classified correctly; atypical vice versa.

The robustness of the radiomics features and model to 
variations in the segmentations and the CT acquisition 
protocols was evaluated using the intra-class correlation 
coefficient (ICC) [31, 32] and ComBat [33, 34] (see 
Supplemental Material 3).

Performance of the Radiologists

To compare the models with clinical practice, three radi-
ologists (5, 15, and 12 years of experience) independently 
scored the lesions on a ten-point scale to indicate their 
certainty of the tumor being a GIST (i.e., 1 = strongly disa-
gree, 10 = strongly agree). The radiologists were blinded 
for the diagnosis but had access to the CT scan, patient 
age, and sex. The agreement between radiologists was 
evaluated using Cohen’s kappa. To enable direct statisti-
cal comparison, the radiomics model was evaluated in an 
additional leave-one-out cross-validation, after which the 
DeLong test was used to compare the AUCs [35].

Fig. 1   Schematic overview of the radiomics approach:  adapted from 
Vos et al. [24]. Input to the algorithm are the CT images (1). Process-
ing steps then include segmentation of the tumor (2), feature extrac-
tion (3), and the creation of machine learning decision models (5), 

using an ensemble of the best 100 workflows from 1000 candidate 
workflows (4), which are different combinations of the different pro-
cessing and analysis steps (e.g., the classifier used). *Abbreviations: 
GIST, gastrointestinal stromal tumor; MI, mitotic index
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Results

Dataset

The dataset included 247 patients (125 GISTs, 122 non-
GISTs) (see Table 1) and has been publicly released [36]. 
The dataset of 247 CT scans originated from 66 different 
scanners, resulting in variation in the acquisition protocols. 
The scans originated from four different manufacturers 
(Siemens, Berlin, Germany: 126; Philips, Eindhoven, the 
Netherlands: 63; General Electric, Boston, United States: 
10; Toshiba, Tokyo, Japan: 48). Between the GIST and 
non-GIST scans, statistically significant differences were 
found in peak kilovoltage (KVP) (p = 0.025), slice thick-
ness (p = 9.52 × 10−4). Their individual predictive power 
was however low (AUC of 0.56 for KVP, 0.60 for slice 
thickness), which is supported by the inter-quartile ranges 
being the same in GISTs and non-GISTs (KVP: (100.0, 
120.0), slice thickness: (3.0, 5.0)). No statistically signifi-
cant differences were found in manufacturer (p = 0.15), 
pixel spacing (p = 0.10), or tube current (p = 0.15). On the 
subset of 30 GISTs that was segmented by both observers, 

the mean DSC was 0.84 (standard deviation of 0.20), indi-
cating good agreement.

Of the 125 GIST patients, two were not included in the 
molecular radiomics analysis as the molecular characteristics 
were obtained after receiving systemic treatment, resulting 
in 123 GIST patients included in the molecular analysis. The 
mutation analysis was performed on tissue obtained from the 
primary lesion, except for three patients where a metastatic 
hepatic lesion was used. c-KIT mutational analysis was per-
formed in 98/123 (80%) GISTs. One patient had a c-KIT 
mutation which was not further specified. Twenty-six out of 
98 patients (27%) had no c-KIT mutation. The majority of 
patients had a c-KIT exon 11 mutation (N = 59, 60%). Due 
to the low numbers of c-KIT exon 9 (N = 10), c-KIT exon 13 
(N = 2), PDGFRA (N = 14), and BRAF (N = 0), these muta-
tions were excluded from further analysis.

The MI was analyzed in 90/123 (73%) GISTs (55 low, 
35 high). The MI of 33 (37%) GISTs was converted to the 
adjusted MI. The MI was determined on excision material 
in 54 (60%) patients, and on biopsy material in 36 (40%) 
patients, including one patient in which the MI was based 
on the hepatic GIST metastasis.

Table 1   Clinical and CT scan characteristics of the dataset. The data-
set of 247 CT scans originated from 66 different scanners, resulting 
in variation in the acquisition protocols. Note that while the imag-

ing characteristics are specified per tumor type, these do not identify 
separate scanners: patients of various tumor types are scanned on the 
same scanners

GIST gastrointestinal stromal tumor, cl centiliter, mm millimeter, mA milliampere
a Median (inter-quartile range)
b Percentages may not add up to 100% because of rounding
c Other values than those given in the inter-quartile range do occur

GISTs Schwannoma Leiomyo-sarcoma Leiomyoma Esophageal/gastric junctional 
adenocarcinoma

Lymphoma

Number 125 22 25 25 25 25
Sex
  Male
  Female

66 (53%)
59 (47%)

11 (50%)
11 (50%)

7 (28%)
18 (72%)

6 (24%)
19 (76%)

16 (64%)
9 (36%)

18 (72%)
7 (28%)

Age at diagnosisa 64 (56–72) 59 (45–67) 60 (53–71) 49 (41–59) 65 (56–74) 62 (52–67)
Tumor locationb

  (Distal) esophagus
  Stomach
  Small intestine
  Colon
  Rectum
  Pelvis
  Mesentery
  Uterus
  Other

-
80 (64%)
29 (23%)
1 (1%)
7 (6%)
1 (1%)
-
-
7 (6%)

-
2 (9.1%)
-
-
-
7 (31.8%)
-
-
13 (59.1%)

-
1 (4%)
1 (4%)
2 (8%)
-
5 (0%)
-
2 (8%)
14 (56%)

6 (24%)
3 (12%)
-
-
-
2 (8%)
-
13 (52%)
1 (4%)

5 (20%)
20 (80%)
-
-
-
-
-
-
-

-
2 (8%)
4 (16%)
1 (4%)
-
1 (4%)
7 (28%)
-
10 (40%)

Tumor volume (cl)a 15.7 (4.3–52.6) 13.9 (1.6–29.7) 12.9 (6.7–99.6) 8.2 (1.6–25.5) 1.6 (0.7–3.1) 9.4 (4.6–29.4)
Acquisition protocol
  Slice thickness (mm)a,c 5.0 (3.0–5.0) 5.0 (2.0–6.0) 5.0 (3.0–5.0) 3.0 (3.0–5.0) 4.0 (3.0–5.0) 3.0 (3.0–3.0)
  Pixel spacing (mm)a,c 0.72 (0.68–0.78) 0.74 (0.68–0.79) 0.72 (0.68–0.78) 0.75 (0.68–0.84) 0.74 (0.66–0.78) 0.77 (0.69–0.85)
  Tube current (mA)a,c 189 (129–283) 162 (115–206) 221 (160–349) 210 (147–395) 210 (142–312) 207 (145–301)
  Peak kilovoltagea,c 120 (100–120) 120 (120–120) 120 (100–120) 120 (100–120) 120 (100–120) 100 (100–100)
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Differential Diagnosis

The performances of the models distinguishing GISTs 
from non-GISTs are shown in Table 2; the ROC curves are 
shown in Fig. 2. The radiomics model, i.e., based on imaging 
only, had a mean AUC of 0.77. An overview of the selected 
algorithms and hyperparameters for each cross-validation 
iteration in this model can be found online [27]. Only using 
volume did not perform well (AUC of 0.56). Combining 
radiomics with age, sex, and location yielded an improve-
ment (AUC of 0.84).

The performance of the radiologists is shown in Table 2; 
their ROC curves are shown in Fig. 2. The three radiologists 
respectively had a lower (0.69), similar (0.76), and higher 
(0.84) AUC than the radiomics model. Compared to the 
model with the same inputs, i.e., based on radiomics, age, 
sex, and tumor location, the AUCs of the first two radiolo-
gists were lower, while the AUC of the third radiologist was 
similar. Cohen’s kappa measures between the pairs of radi-
ologists were 0.20, 0.31, and 0.33, all indicating poor inter-
observer agreement. The DeLong test between the pairs of 
radiologists indicated a statistically significant difference in 
performance for radiologists 1 versus 3 (p = 6 × 10−5) and 
2 versus 3 (p = 0.01). The radiomics model evaluated in a 
leave-one-out cross-validation (AUC of 0.82) performed 
statistically significantly better than the first radiologist 
(p = 0.0018); for comparison with the other radiologists, the 
differences were not statistically significant.

Evaluation of Models for the Molecular Analysis

For the c-KIT mutation stratification and MI predictions, the 
performance of the model based on radiomics, age, and sex 
is depicted in Table 3. All models had a mean AUC close 
to guessing (0.50) and focused on the majority class (c-KIT 
mutation and c-KIT exon 11 mutation: high sensitivity, low 
specificity; MI vice versa).

Model Insight

As the molecular analysis models did not perform well, 
the model insight analysis was only conducted for the dif-
ferential diagnosis. The p-values of the feature importance 
analysis are shown in Supplemental Table S1. In total, 43 
features had significant p-values after Bonferroni correction 
(1.1 × 10−17 to 4.6 × 10−2). These included the tumor location 
(1.1 × 10−17), two intensity features, three orientation fea-
tures, four shape features of which three related to the tumor 
area, and 33 texture features. A list of these features and their 
p-values has been added to the mentioned published code 
[27]. Volume was not found to be significant.

GISTs were ranked from typical to atypical as iden-
tified by the radiomics model. Of the 247 patients, 104 
tumors (44 GISTs, 60 non-GISTs, 42%) were always clas-
sified correctly and were thus considered typical. Twenty-
nine tumors (18 GISTs, 11 non-GISTs, 12%) were always 
classified incorrectly and thus atypical. In Fig. 3, four CT 
slices of such typical and atypical examples of GISTs are 
shown. Visual inspection of the tumors on imaging defined 
as typical or atypical by the radiomics model showed a 
relation with necrosis (more present in typical GIST, typi-
cally a necrotic core) and shape (more compact, circular, 
and non-lobulated for typical GIST). The tumors which 
were equally often classified as GIST and non-GIST in 
the cross-validation iterations were mostly small tumors. 
The typical imaging characteristics used by the model and 

Table 2   Performances of the models for the differential diagnosis 
based on radiomics features only, and radiomics, age, sex and tumor 
location, and that of the three radiologists (Rad1-3). Values for the 
models are the mean presented with their 95% confidence intervals

AUC​ area under the receiver operating characteristic curve, BCA bal-
anced classification accuracy, Rad1, Rad2, and Rad3 radiologists 1, 
2, and 3

Radiomics Radiomics + age
+ sex + location

Rad1 Rad2 Rad3

AUC​ 0.77 [0.71, 
0.83]

0.84 [0.79, 0.90] 0.69 0.76 0.84

BCA 0.70 [0.65, 
0.76]

0.76 [0.70, 0.82] 0.67 0.67 0.76

Sensitivity 0.66 [0.56, 
0.76]

0.79 [0.71, 0.88] 0.74 0.90 0.78

Specificity 0.74 [0.66, 
0.83]

0.72 [0.61, 0.83] 0.60 0.44 0.74

Fig. 2   Receiver operating characteristic curves of the models for the 
differential diagnosis based on radiomics only and radiomics, age, sex, 
and tumor location. Additionally, the curves for scoring by three radi-
ologists are shown, and the cutoff points for both the models and the 
radiologists. For the radiomics model based on imaging only, the grey 
crosses identify the 95% confidence intervals of the 100 × random-split 
cross-validation; the red curve is fit through their means
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the difficulty with small tumors correspond to findings in 
the literature on GIST risk stratification [14, 37]. Smaller 
tumors were also more often misclassified by the radiolo-
gists in our study.

Only using features with a good (ICC > 0.75, 327/564 
features) or excellent (ICC > 0.9, 197/564 features) 

reliability across the segmentations lowered the perfor-
mance (AUC of 0.67 for both). Using ComBat to harmo-
nize the features for manufacturer or protocol differences 
yielded a similar performance as without (AUC of 0.80 and 
0.77, respectively). Detailed results for these experiments 
are shown in Supplemental Table S2.

Table 3   Performance of the model based on radiomics, age, and sex, 
for the GIST mutation stratification and the mitotic index prediction. 
First column: c-KIT presence vs. absence; second column: c-KIT 
exon 11 presence vs. absence; third column: mitotic index (≤ 5/50 

HPF vs. > 5/50 HPF). The number of patients included in each analy-
sis (N) is mentioned in the heading. Values are presented with their 
95% confidence intervals

AUC​ area under the receiver operating characteristic curve, BCA balanced classification accuracy

c-KIT (N = 98) c-KIT exon 11 (N = 96) Mitotic index (N = 90)

AUC​ 0.51 [0.36, 0.66] 0.57 [0.45, 0.68] 0.54 [0.42, 0.65]
BCA 0.49 [0.45, 0.54] 0.53 [0.44, 0.63] 0.51 [0.41, 0.60]
Sensitivity 0.96 [0.91, 1.0] 0.70 [0.54, 0.87] 0.27 [0.08, 0.46]
Specificity 0.03 [0.0, 0.11] 0.36 [0.20, 0.53] 0.75 [0.61, 0.88]

Fig. 3   Examples of GISTs 
always correctly or always 
incorrectly classified by the 
radiomics model. The typical 
examples (a and b) are two of 
the GISTs always classified cor-
rectly by the radiomics model; 
the atypical examples (c and 
d) are two of the GISTs always 
classified incorrectly by the 
radiomics model
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Discussion

Radiomics can distinguish GISTs from other intra-abdominal 
tumors with a performance similar to three radiologists. Radi-
omics could not predict the presence and subtype of c-KIT 
mutations or the MI.

Diagnosing GISTs is currently done manually by radiolo-
gists and confirmed through a tissue biopsy [4, 38, 39]. The 
ability to distinguish rare GISTs from non-GISTs on routine 
CT scans through radiomics could be a quick method for 
the initial assessment of intra-abdominal tumors. Radiomics 
could aid quick referral of GIST patients from a periph-
eral hospital to a center of expertise, shortening time to 
diagnosis by refining patient selection prior to biopsies, 
and prevent GISTs from being missed (i.e., false negatives), 
unnecessary referral, or even treatment for non-GISTs (i.e., 
false positives). To our knowledge, this is the first study to 
evaluate the GIST differential diagnosis on many locations 
through an automated radiomics approach on a large, multi-
scanner dataset, and compare the performance of the model 
with that of the radiologists.

There were significant performance differences between 
the radiologists, and their agreement was poor, indicating 
high observer dependence. The advantages of the radi-
omics model are that it is automatic and observer inde-
pendent, assuming the segmentation is reproducible as 
indicated by the high DSC and that it will always give the 
same prediction on the same image, thereby improving 
consistency over manual scoring.

In clinical practice, tumor location is highly relevant for 
distinguishing GISTs from non-GISTs, as GISTs grow typ-
ically in the stomach or small intestines [2]. In our study, 
tumor location was based on radiology reports, which is 
subjective and occasionally fails to report the true tumor 
primary origin [19]. Moreover, the tumor location distri-
bution in our dataset may not be a correct representation of 
the overall population, e.g., only non-GISTs were located 
in the uterus. Despite the subjectivity of potential bias in 
tumor location, we added location to the imaging model 
for a fair comparison with the radiologists. Although this 
led to a higher AUC, a model based on location, e.g., sim-
ply classifying all lesions in the uterus as non-GISTs, is 
unfeasible and cannot be applied in the general popula-
tion. The radiomics model rather predicts the likelihood 
of a lesion being a GIST purely based on the imaging 
appearance. Further research on location-matched datasets 
is required to investigate the value of location in the GIST 
differential diagnosis model.

In the literature, radiomics for risk classification or out-
comes such as malignant potential or aggressive behav-
ior for GISTs [8–17] has mostly been based on criteria 
such as the Armed Forces Institute of Pathology criteria, 

modified National Institutes of Health consensus criteria 
of 2008, and the modified Fletcher classification system 
[3, 40–44]. These studies illustrate the clinical need for 
new methods to stratify GISTs and show the potential of 
radiomics for GISTs. Our first contribution with respect to 
the existing literature is the focus on the diagnostic trajec-
tory of GISTs, to simplify the diagnostic process of this 
rare tumor type by predicting the differential diagnosis. 
Existing studies mainly focus on risk classification, which 
has a less apparent direct application in clinical practice, 
and generally first require the GIST differential diagnosis 
to be applicable [3, 40–43]. Second, our method deter-
mines the optimal radiomics pipeline from a large num-
ber of radiomics algorithms and parameters, automatically 
evaluating a large number of radiomics methods, whereas 
existing studies typically report the results of a “hand-
crafted,” manually optimized radiomics pipeline [8–17]. 
Moreover, through an extensive cross-validation scheme, 
all model optimization was performed on the training data-
set, eliminating the risk of overfitting the model on the 
test set. Lastly, we evaluated the model’s robustness to 
segmentation and scanner variations.

Our model was not able to distinguish different genetic 
mutations or the MI of GISTs, which may be attributed to 
various factors. First, the dataset for the mutation analysis 
was relatively small (e.g., 90 patients in the MI analysis), 
which may have been too small for radiomics to learn from. 
Second, the use of different gene panels for the GIST muta-
tional analysis over the years may have resulted in inaccura-
cies in the golden standard. Additionally, this might have led 
to a potential underestimation of mutation prevalence in the 
current cohort, as newer sequencing techniques use larger 
gene panels and have a higher sensitivity. Third, other (more 
complex or deep learning based) radiomics methods may be 
required to discover more intricate features. Lastly, the nega-
tive results may simply suggest that molecular characteris-
tics such as a c-KIT mutation are too subtle to detect solely 
based on portal venous phase CT imaging characteristics. 
Other CT phases or modalities (e.g., magnetic resonance 
imaging) could provide more useful information.

Our study has several limitations. First, there was hetero-
geneity in the acquisition protocols. There were two acquisi-
tion parameters (KVP and slice thickness) with statistically 
significant differences between GISTs and non-GISTs, but 
their individual predictive power was low. Hence, although 
a minor positive bias due to heterogeneity in acquisition pro-
tocols cannot be completely ruled out, the predictive perfor-
mance cannot be attributed to this bias alone. Alternatively, 
this heterogeneity may have also negatively affected the 
performance. Nevertheless, the radiomics model achieved 
a promising performance, similar to three experienced radi-
ologists, suggesting high generalizability. Second, complete 
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histologic data was only available for a subset of the patients. 
No data regarding the clinical outcome such as survival or 
recurrence was available for the GISTs. Finally, the current 
radiomics approach requires manual segmentation. While 
accurate, this process is also time-consuming and potentially 
subject to observer variability, although the DSC indicated 
good agreement. Only using features with a good or excel-
lent reliability across the segmentations lowered the perfor-
mance. This may indicate that there are features that have 
a low reliability but a high predictive power, thus resulting 
in low performance when removing these. Alternatively, it 
may indicate overfitting of the model to observer-dependent 
characteristics of the segmentation and thus exploitation of a 
bias in the segmentations. Automatic segmentation methods 
may help to overcome this limitation.

Future work should focus on the extension of the dataset, 
leading to more statistical power, potentially improving the 
performance as the model has more cases to learn from, 
and paving the way for more data-driven approaches such 
as deep learning. Also, this may result in sufficient samples 
to study the prediction of less common GIST mutations. 
Next, external validation of our findings on an independent, 
external dataset is required. Eventually, this may be followed 
by a prospective clinical trial with harmonized acquisition 
protocols in which the performance, as well as the cost-
effectiveness, is assessed.

Conclusions

Our radiomics model was able to distinguish GIST from 
non-GIST intra-abdominal tumors based on pre-treatment 
CT imaging with a performance similar to three experienced 
radiologists, but is less observer dependent. Our model may 
therefore aid clinicians early on in the diagnostic chain to 
ensure rapid transfer of GISTs to specialized centers. The 
model was not able to predict the c-KIT mutational status 
and the MI.
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