2,089 research outputs found

    Coupled cluster calculations on TiO2 nanoclusters

    Get PDF
    The excitation energies of the four lowest-lying singlet excited states of the TiO2, Ti2O4, and Ti3O6 clusters are calculated by a variety of different Equation-of-Motion Coupled Cluster (EOM-CC) approaches in order to obtain benchmark values for the optical excitations of titanium dioxide clusters. More specifically we investigate what the effect is of the inclusion of triple excitations “triples” in the (EOM-)CC scheme on the calculated excited states of the clusters. While for the monomer and dimer the inclusion of triples is found to only cause a rigid shift in the excitation energies, in the case of the trimer the crossing of the excited states is observed. Coupled cluster approaches where triples are treated perturbatively were found to offer no advantage over EOM-CCSD, whereas the active-space methods (EOM-CCSDt(II/I)) were demonstrated to yield results very close to full EOM-CCSDT, but at a much reduced computational cost

    Conserved co-expression for candidate disease gene prioritization

    Get PDF
    Contains fulltext : 71114.pdf ( ) (Open Access)BACKGROUND: Genes that are co-expressed tend to be involved in the same biological process. However, co-expression is not a very reliable predictor of functional links between genes. The evolutionary conservation of co-expression between species can be used to predict protein function more reliably than co-expression in a single species. Here we examine whether co-expression across multiple species is also a better prioritizer of disease genes than is co-expression between human genes alone. RESULTS: We use co-expression data from yeast (S. cerevisiae), nematode worm (C. elegans), fruit fly (D. melanogaster), mouse and human and find that the use of evolutionary conservation can indeed improve the predictive value of co-expression. The effect that genes causing the same disease have higher co-expression than do other genes from their associated disease loci, is significantly enhanced when co-expression data are combined across evolutionarily distant species. We also find that performance can vary significantly depending on the co-expression datasets used, and just using more data does not necessarily lead to better prioritization. Instead, we find that dataset quality is more important than quantity, and using a consistent microarray platform per species leads to better performance than using more inclusive datasets pooled from various platforms. CONCLUSION: We find that evolutionarily conserved gene co-expression prioritizes disease candidate genes better than human gene co-expression alone, and provide the integrated data as a new resource for disease gene prioritization tools.13 p

    Genetic regulators of sputum mucin concentration and their associations with COPD phenotypes

    Get PDF
    Hyper-secretion and/or hyper-concentration of mucus is a defining feature of multiple obstructive lung diseases, including chronic obstructive pulmonary disease (COPD). Mucus itself is composed of a mixture of water, ions, salt and proteins, of which the gel-forming mucins, MUC5AC and MUC5B, are the most abundant. Recent studies have linked the concentrations of these proteins in sputum to COPD phenotypes, including chronic bronchitis (CB) and acute exacerbations (AE). We sought to determine whether common genetic variants influence sputum mucin concentrations and whether these variants are also associated with COPD phenotypes, specifically CB and AE. We performed a GWAS to identify quantitative trait loci for sputum mucin protein concentration (pQTL) in the Sub-Populations and InteRmediate Outcome Measures in COPD Study (SPIROMICS, n = 708 for total mucin, n = 215 for MUC5AC, MUC5B). Subsequently, we tested for associations of mucin pQTL with CB and AE using regression modeling (n = 822-1300). Replication analysis was conducted using data from COPDGene (n = 5740) and by examining results from the UK Biobank. We identified one genome-wide significant pQTL for MUC5AC (rs75401036) and two for MUC5B (rs140324259, rs10001928). The strongest association for MUC5B, with rs140324259 on chromosome 11, explained 14% of variation in sputum MUC5B. Despite being associated with lower MUC5B, the C allele of rs140324259 conferred increased risk of CB (odds ratio (OR) = 1.42; 95% confidence interval (CI): 1.10-1.80) as well as AE ascertained over three years of follow up (OR = 1.41; 95% CI: 1.02-1.94). Associations between rs140324259 and CB or AE did not replicate in COPDGene. However, in the UK Biobank, rs140324259 was associated with phenotypes that define CB, namely chronic mucus production and cough, again with the C allele conferring increased risk. We conclude that sputum MUC5AC and MUC5B concentrations are associated with common genetic variants, and the top locus for MUC5B may influence COPD phenotypes, in particular CB.</p

    Genetic regulators of sputum mucin concentration and their associations with COPD phenotypes

    Get PDF
    Hyper-secretion and/or hyper-concentration of mucus is a defining feature of multiple obstructive lung diseases, including chronic obstructive pulmonary disease (COPD). Mucus itself is composed of a mixture of water, ions, salt and proteins, of which the gel-forming mucins, MUC5AC and MUC5B, are the most abundant. Recent studies have linked the concentrations of these proteins in sputum to COPD phenotypes, including chronic bronchitis (CB) and acute exacerbations (AE). We sought to determine whether common genetic variants influence sputum mucin concentrations and whether these variants are also associated with COPD phenotypes, specifically CB and AE. We performed a GWAS to identify quantitative trait loci for sputum mucin protein concentration (pQTL) in the Sub-Populations and InteRmediate Outcome Measures in COPD Study (SPIROMICS, n = 708 for total mucin, n = 215 for MUC5AC, MUC5B). Subsequently, we tested for associations of mucin pQTL with CB and AE using regression modeling (n = 822-1300). Replication analysis was conducted using data from COPDGene (n = 5740) and by examining results from the UK Biobank. We identified one genome-wide significant pQTL for MUC5AC (rs75401036) and two for MUC5B (rs140324259, rs10001928). The strongest association for MUC5B, with rs140324259 on chromosome 11, explained 14% of variation in sputum MUC5B. Despite being associated with lower MUC5B, the C allele of rs140324259 conferred increased risk of CB (odds ratio (OR) = 1.42; 95% confidence interval (CI): 1.10-1.80) as well as AE ascertained over three years of follow up (OR = 1.41; 95% CI: 1.02-1.94). Associations between rs140324259 and CB or AE did not replicate in COPDGene. However, in the UK Biobank, rs140324259 was associated with phenotypes that define CB, namely chronic mucus production and cough, again with the C allele conferring increased risk. We conclude that sputum MUC5AC and MUC5B concentrations are associated with common genetic variants, and the top locus for MUC5B may influence COPD phenotypes, in particular CB.</p
    • …
    corecore