6 research outputs found

    Epigenetic alterations of the Wnt signaling pathway in cancer: a mini review

    No full text
    Epigenetic mechanisms play a crucial role in cellular proliferation, migration and differentiation in both normal and neoplastic development. One of the key signaling pathways whose components are altered through the epigenetic mechanisms is the Wnt signaling pathway. In this review, we briefly discuss the key concepts of epigenetics and focus on the recent advances in the Wnt signaling pathway research and its potential diagnostic and therapeutic implications

    Structural changes in the rat placenta during the last third of gestation discovered by stereology

    Get PDF
    Structural changes in the rat placenta during the last third of gestation were for the first time assessed by stereology. Fischer female rats were euthanized on the day 16 or day 19 of gestation, and 35 placentas were collected. Three randomly selected placentas from each group were stereologically analyzed for the absolute volume. The proportion of the glycogenic cells and the trophoblast giant cells (TGC) in the basal part of the placenta was calculated using volume density.  The absolute volume of the rat placenta on the day 16 of gestation was determined as 0.0638 cm3. The labyrinth comprised 0.0274 cm3, the basal plate 0.0271 cm3 and the decidua 0.0093 cm3. On the day 19 of gestation, the absolute volume of the placenta was 0.1627 cm3, the labyrinth occupied 0.0922 cm3, the basal plate 0.0596 cm3 and the decidua 0.0109 cm3. The volume density of trophoblast giant cells was 0.174 cm0 on the day 16 and 0.107 cm0 on the day 19 of gestation. The glycogenic cells comprised 0.379 percentage of the basal plate on the day 16 and 0.236 on the day 19 of gestation. We conclude that the absolute volume of the whole placenta and the labyrinth has increased from day 16 to the day 19 of gestation. In contrast, the volume density of glycogenic cells and trophoblast giant cells was higher on the day 16 than on the day 19 of gestation, probably due to the intensive trophoblast invasion during that time

    Dishevelled family proteins in serous ovarian carcinomas: A clinicopathologic and molecular study

    No full text
    Dishevelled family proteins (DVL1, DVL2 and DVL3) are cytoplasmic mediators involved in canonical and non-canonical Wnt signaling that are important for embryonic development. Since Wnt signaling promotes cell proliferation and invasion, its increased activation is associated with cancer development as well. To get deeper insight into the behavior of Dishevelled proteins in cancer, we studied their expression in serous ovarian carcinomas [both low- (LGSC) and high-grade (HGSC)], and HGSC cell lines OVCAR5, OVCAR8 and OVSAHO. DVL protein expression in serous ovarian carcinomas tissues was analyzed using immunohistochemistry while DVL protein and mRNA expressions in HGSC cell lines were analyzed using western blot and quantitative real-time PCR. DVL1 protein expression was significantly higher in LGSC compared with normal ovarian tissue, while DVL3 was overexpressed in both LGSC and HGSC. DVL2 and DVL3 protein expression was higher in HGSC cell lines when compared with normal control cell line while DVL1, DVL2, and DVL3 mRNA expression was significantly increased only in OVSAHO cell line. Survival analysis revealed no significant impact of DVL proteins on patients' outcome. Our data show an active involvement of Dishevelled family proteins in serous ovarian carcinomas. Further studies should confirm the clinical relevance of these observations.European Union through the Europe Regional Development Fund, Operational Programme Competitiveness and Cohesion, under grant agreement No. KK.01.1.1.01.0008 Qatar University: QUSD-CMED-2018-

    Consensus statement on standards and guidelines for the molecular diagnostics of Alport syndrome: refining the ACMG criteria

    Get PDF
    The recent Chandos House meeting of the Alport Variant Collaborative extended the indications for screening for pathogenic variants in the COL4A5, COL4A3 and COL4A4 genes beyond the classical Alport phenotype (haematuria, renal failure; family history of haematuria or renal failure) to include persistent proteinuria, steroid-resistant nephrotic syndrome, focal and segmental glomerulosclerosis (FSGS), familial IgA glomerulonephritis and end-stage kidney failure without an obvious cause. The meeting refined the ACMG criteria for variant assessment for the Alport genes (COL4A3-5). It identified 'mutational hotspots' (PM1) in the collagen IV α5, α3 and α4 chains including position 1 Glycine residues in the Gly-X-Y repeats in the intermediate collagenous domains; and Cysteine residues in the carboxy non-collagenous domain (PP3). It considered that 'well-established' functional assays (PS3, BS3) were still mainly research tools but sequencing and minigene assays were commonly used to confirm splicing variants. It was not possible to define the Minor Allele Frequency (MAF) threshold above which variants were considered Benign (BA1, BS1), because of the different modes of inheritances of Alport syndrome, and the occurrence of hypomorphic variants (often Glycine adjacent to a non-collagenous interruption) and local founder effects. Heterozygous COL4A3 and COL4A4 variants were common 'incidental' findings also present in normal reference databases. The recognition and interpretation of hypomorphic variants in the COL4A3-COL4A5 genes remains a challenge

    Guidelines for Genetic Testing and Management of Alport Syndrome

    No full text
    Genetic testing for pathogenic COL4A3–5 variants is usually undertaken to investigate the cause of persistent hematuria, especially with a family history of hematuria or kidney function impairment. Alport syndrome experts now advocate genetic testing for persistent hematuria, even when a heterozygous pathogenic COL4A3 or COL4A4 is suspected, and cascade testing of their first-degree family members because of their risk of impaired kidney function. The experts recommend too that COL4A3 or COL4A4 heterozygotes do not act as kidney donors. Testing for variants in the COL4A3–COL4A5 genes should also be performed for persistent proteinuria and steroid-resistant nephrotic syndrome due to suspected inherited FSGS and for familial IgA glomerulonephritis and kidney failure of unknown cause
    corecore