169 research outputs found
Terpene analogues of dithiophospate pesticides
New optically active O,O-diterpenyl dithiophosphoric and O-terpenyl aryldithiophosphonic acids were prepared when chiral terpenols such as (1R)-endo-(+)-fenchyl alcohol, (1S)-endo-(-)-borneol, (1R)-(-)-nopol, and (1R,2S,3S,5R)-(+)-isopinocampheol were involved in reactions with tetraphosphorus decasulfide and 2,4-diaryl 1,3,2,4- dithiadiphosphetane-2,4- disulfides. Copyright © Taylor & Francis Group, LLC
Thiophosphorylation of pharmacophoric phenols, diols, and triols
Novel organyldithiophosphonic and bis(aryldithiophosphonic) acids were obtained by the reaction of 2,4-diorganyl 1,3,2,4-dithiadiphosphetane-2,4- disulfides with paracetamol, 4-(1H-pyrrol-1-yl)phenol, ethambutol dihydrochloride, vitamin B6, and its acetonide derivatives. © 2013 Copyright Taylor and Francis Group, LLC
Cell-specific occupancy of an extended repertoire of CREM and CREB binding loci in male germ cells
Background: CREB and CREM are closely related factors that regulate transcription in response to various stress, metabolic and developmental signals. The CREMτ activator isoform is selectively expressed in haploid spermatids and plays an essential role in murine spermiogenesis.Results: We have used chromatin immunoprecipitation coupled to sequencing (ChIP-seq) to map CREM and CREB target loci in round spermatids from adult mouse testis and spermatogonia derived GC1-spg cells respectively. We identify more than 9000 genomic loci most of which are cell-specifically occupied. Despite the fact that round spermatids correspond to a highly specialised differentiated state, our results show that they have a remarkably accessible chromatin environment as CREM occupies more than 6700 target loci corresponding not only to the promoters of genes selectively expressed in spermiogenesis, but also of genes involved in functions specific to other cell types. The expression of only a small subset of these target genes are affected in the round spermatids of CREM knockout animals. We also identify a set of intergenic binding loci some of which are associated with H3K4 trimethylation and elongating RNA polymerase II suggesting the existence of novel CREB and CREM regulated transcripts.Conclusions: We demonstrate that CREM and CREB occupy a large number of promoters in highly cell specific manner. This is the first study of CREM target promoters directly in a physiologically relevant tissue in vivo and represents the most comprehensive experimental analysis of CREB/CREM regulatory potential to date
Thiophosphorylated resorcinol, calix[4]resorcinols, and other hydroxyphenols
Perdithiophosphonic acids are new types of tetracoordinated phosphorus thioacids bearing many dithiophosphoryl groups. Novel perdithiophosphonic acids were obtained by the reactions of 2,4-diaryl-1,3,2,4-dithiadiphosphetane-2,4- disulfides with hydroxyphenols such as resorcinol, 4,4'-iso- propylidenebisphenol, pyrogallol, and calix[4]resorcinols. Copyright © Taylor & Francis Group, LLC
PloS one
Collagen 6A3 (Col6a3), a component of extracellular matrix, is often up-regulated in tumours and is believed to play a pro-oncogenic role. However the mechanisms of its tumorigenic activity are poorly understood. We show here that Col6a3 is highly expressed in densely growing mouse embryonic fibroblasts (MEFs). In MEFs where the TAF4 subunit of general transcription factor IID (TFIID) has been inactivated, elevated Col6a3 expression prevents contact inhibition promoting their 3 dimensional growth as foci and fibrospheres. Analyses of gene expression in densely growing Taf4(-/-) MEFs revealed repression of the Hippo pathway and activation of Wnt signalling. The Hippo activator Kibra/Wwc1 is repressed under dense conditions in Taf4(-/-) MEFs, leading to nuclear accumulation of the proliferation factor YAP1 in the cells forming 3D foci. At the same time, Wnt9a is activated and the Sfrp2 antagonist of Wnt signalling is repressed. Surprisingly, treatment of Taf4(-/-) MEFs with all-trans retinoic acid (ATRA) restores contact inhibition suppressing 3D growth. ATRA represses Col6a3 expression independently of TAF4 expression and Col6a3 silencing is sufficient to restore contact inhibition in Taf4(-/-) MEFs and to suppress 3D growth by reactivating Kibra expression to induce Hippo signalling and by inducing Sfrp2 expression to antagonize Wnt signalling. All together, these results reveal a critical role for Col6a3 in regulating both Hippo and Wnt signalling to promote 3D growth, and show that the TFIID subunit TAF4 is essential to restrain the growth promoting properties of Col6a3. Our data provide new insight into the role of extra cellular matrix components in regulating cell growth
Discovering Regulatory Overlapping RNA Transcripts
STEREO is a novel algorithm that discovers cis-regulatory RNA interactions by assembling complete and potentially overlapping same-strand RNA transcripts from tiling expression data. STEREO first identifies coherent segments of transcription and then discovers individual transcripts that are consistent with the observed segments given intensity and shape constraints. We used STEREO to identify 1446 regions of overlapping transcription in two strains of yeast, including transcripts that comprise a new form of molecular toggle switch that controls gene variegation
Stabilization of ribozyme-like cis-noncoding rRNAs induces apoptotic and nonapoptotic death in lung cells
Bidirectional non-protein-coding RNAs are ubiquitously transcribed from the genome. Convergent sense and antisense transcripts may regulate each other. Here, we examined the convergent cis-noncoding rRNAs (nc-rRNAs) in A5 and E9 lung cancer models. Sense nc-rRNAs extending from rDNA intergenic region to internal transcribed spacer of around 10 kb in length were identified. nc-rRNAs in sense direction exhibited in vitro characteristics of ribozymes, namely, degradation upon incubation with MgCl2 and stabilization by complementary oligonucleotides. Detection of endogenous cleavage-ligation products carrying internal deletion of hundreds to thousands nucleotides by massively parallel sequencing confirmed the catalytic properties. Transfection of oligonucleotides pairing with antisense nc-rRNAs stabilized both target and complementary transcripts, perturbed rRNA biogenesis, and induced massive cell death via apoptotic and/or nonapoptotic mechanisms depending on cell type and treatment. Oligonucleotides targeting cellular sense transcripts are less responsive. Spontaneously detached cells, though rare, also showed accumulation of nc-rRNAs and perturbation of rRNA biogenesis. Direct participation of nc-rRNAs in apoptotic and nonapoptotic death was demonstrated by transfection of synthetic nc-rRNAs encompassing the rDNA promoter. In sum, convergent cis-nc-rRNAs follow a feed-forward mechanism to regulate each other and rRNA biogenesis. This opens an opportunity to disrupt rRNA biogenesis, commonly upregulated in cancers, via inhibition of ribozyme-like activities in nc-rRNAs
Detection of a MicroRNA Signal in an In Vivo Expression Set of mRNAs
Background. microRNAs (miRNAs) are approximately 21 nucleotide non-coding transcripts capable of regulating gene expression. The most widely studied mechanism of regulation involves binding of a miRNA to the target mRNA. As a result, translation of the target mRNA is inhibited and the mRNA may be destabilized. The inhibitory effects of miRNAs have been linked to diverse cellular processes including malignant proliferation, apoptosis, development, differentiation, and metabolic processes. We asked whether endogenous fluctuations in a set of mRNA and miRNA profiles contain correlated changes that are statistically distinguishable from the many other fluctuations in the data set. Methodology/Principal Findings. RNA was extracted from 12 human primary brain tumor biopsies. These samples were used to determine genome-wide mRN
The TATA-binding protein regulates maternal mRNA degradation and differential zygotic transcription in zebrafish
Early steps of embryo development are directed by maternal gene products and trace levels of zygotic gene activity in vertebrates. A major activation of zygotic transcription occurs together with degradation of maternal mRNAs during the midblastula transition in several vertebrate systems. How these processes are regulated in preparation for the onset of differentiation in the vertebrate embryo is mostly unknown. Here, we studied the function of TATA-binding protein (TBP) by knock down and DNA microarray analysis of gene expression in early embryo development. We show that a subset of polymerase II-transcribed genes with ontogenic stage-dependent regulation requires TBP for their zygotic activation. TBP is also required for limiting the activation of genes during development. We reveal that TBP plays an important role in the degradation of a specific subset of maternal mRNAs during late blastulation/early gastrulation, which involves targets of the miR-430 pathway. Hence, TBP acts as a specific regulator of the key processes underlying the transition from maternal to zygotic regulation of embryogenesis. These results implicate core promoter recognition as an additional level of differential gene regulation during development
Comparative Analysis of Human Protein-Coding and Noncoding RNAs between Brain and 10 Mixed Cell Lines by RNA-Seq
In their expression process, different genes can generate diverse functional products, including various protein-coding or noncoding RNAs. Here, we investigated the protein-coding capacities and the expression levels of their isoforms for human known genes, the conservation and disease association of long noncoding RNAs (ncRNAs) with two transcriptome sequencing datasets from human brain tissues and 10 mixed cell lines. Comparative analysis revealed that about two-thirds of the genes expressed between brain and cell lines are the same, but less than one-third of their isoforms are identical. Besides those genes specially expressed in brain and cell lines, about 66% of genes expressed in common encoded different isoforms. Moreover, most genes dominantly expressed one isoform and some genes only generated protein-coding (or noncoding) RNAs in one sample but not in another. We found 282 human genes could encode both protein-coding and noncoding RNAs through alternative splicing in the two samples. We also identified more than 1,000 long ncRNAs, and most of those long ncRNAs contain conserved elements across either 46 vertebrates or 33 placental mammals or 10 primates. Further analysis showed that some long ncRNAs differentially expressed in human breast cancer or lung cancer, several of those differentially expressed long ncRNAs were validated by RT-PCR. In addition, those validated differentially expressed long ncRNAs were found significantly correlated with certain breast cancer or lung cancer related genes, indicating the important biological relevance between long ncRNAs and human cancers. Our findings reveal that the differences of gene expression profile between samples mainly result from the expressed gene isoforms, and highlight the importance of studying genes at the isoform level for completely illustrating the intricate transcriptome
- …