3 research outputs found

    The internal Faraday screen of Sagittarius A*

    Get PDF
    We report on 85-101 GHz light curves of the Galactic Center supermassive black hole, Sagittarius A* (Sgr A*), observed in April 2017 with the Atacama Large Millimeter /submillimeter Array (ALMA). This study of high-cadence full-Stokes data provides new measurements of the fractional linear polarization at a 1-2% level resolved in 4 s time segments, and stringent upper limits on the fractional circular polarization at 0.3%. We compare these findings to ALMA light curves of Sgr A* at 212-230 GHz observed three days later, characterizing a steep depolarization of the source at frequencies below about 150 GHz. We obtain time-dependent rotation measure (RM) values, with the mean RM at 85-101 GHz being a factor of two lower than that at 212-230 GHz. Together with the rapid temporal variability of the RM and its di fferent statistical characteristics in both frequency bands, these results indicate that the Faraday screen in Sgr A* is largely internal, with about half of the Faraday rotation taking place inside the inner 10 gravitational radii, contrary to the common external Faraday screen assumption. We then demonstrate how this observation can be reconciled with theoretical models of radiatively ine fficient accretion flows for a reasonable set of physical parameters. Comparisons with numerical general relativistic magnetohydrodynamic simulations suggest that the innermost part of the accretion flow in Sgr A* is much less variable than these models predict; in particular, the observed magnetic field structure appears to be coherent and persistent

    The persistent shadow of the supermassive black hole of M 87

    Get PDF
    In April 2019, the Event Horizon Telescope (EHT) Collaboration reported the first-ever event-horizon-scale images of a black hole, resolving the central compact radio source in the giant elliptical galaxy M 87. These images reveal a ring with a southerly brightness distribution and a diameter of āˆ¼42 Ī¼as, consistent with the predicted size and shape of a shadow produced by the gravitationally lensed emission around a supermassive black hole. These results were obtained as part of the April 2017 EHT observation campaign, using a global very long baseline interferometric radio array operating at a wavelength of 1.3 mm. Here, we present results based on the second EHT observing campaign, taking place in April 2018 with an improved array, wider frequency coverage, and increased bandwidth. In particular, the additional baselines provided by the Greenland telescope improved the coverage of the array. Multiyear EHT observations provide independent snapshots of the horizon-scale emission, allowing us to confirm the persistence, size, and shape of the black hole shadow, and constrain the intrinsic structural variability of the accretion flow. We have confirmed the presence of an asymmetric ring structure, brighter in the southwest, with a median diameter of 43.3āˆ’3.1+1.5ā€…Ī¼as. The diameter of the 2018 ring is remarkably consistent with the diameter obtained from the previous 2017 observations. On the other hand, the position angle of the brightness asymmetry in 2018 is shifted by about 30Ā° relative to 2017. The perennial persistence of the ring and its diameter robustly support the interpretation that the ring is formed by lensed emission surrounding a Kerr black hole with a mass āˆ¼6.5ā€…Ć—ā€…109ā€†MāŠ™. The significant change in the ring brightness asymmetry implies a spin axis that is more consistent with the position angle of the large-scale jet

    First Sagittarius A* Event Horizon Telescope Results. VIII. Physical Interpretation of the Polarized Ring

    Get PDF
    In a companion paper, we present the first spatially resolved polarized image of Sagittarius A* on event horizon scales, captured using the Event Horizon Telescope, a global very long baseline interferometric array operating at a wavelength of 1.3 mm. Here we interpret this image using both simple analytic models and numerical general relativistic magnetohydrodynamic (GRMHD) simulations. The large spatially resolved linear polarization fraction (24%ā€“28%, peaking at āˆ¼40%) is the most stringent constraint on parameter space, disfavoring models that are too Faraday depolarized. Similar to our studies of M87*, polarimetric constraints reinforce a preference for GRMHD models with dynamically important magnetic fields. Although the spiral morphology of the polarization pattern is known to constrain the spin and inclination angle, the time-variable rotation measure (RM) of Sgr A* (equivalent to ā‰ˆ46Ā° Ā± 12Ā° rotation at 228 GHz) limits its present utility as a constraint. If we attribute the RM to internal Faraday rotation, then the motion of accreting material is inferred to be counterclockwise, contrary to inferences based on historical polarized flares, and no model satisfies all polarimetric and total intensity constraints. On the other hand, if we attribute the mean RM to an external Faraday screen, then the motion of accreting material is inferred to be clockwise, and one model passes all applied total intensity and polarimetric constraints: a model with strong magnetic fields, a spin parameter of 0.94, and an inclination of 150Ā°. We discuss how future 345 GHz and dynamical imaging will mitigate our present uncertainties and provide additional constraints on the black hole and its accretion flow
    corecore