16 research outputs found

    Solar magnetic elements at 0 

    No full text
    Small magnetic structures can be seen in G-band filtergrams as isolated bright points, strings of bright points and dark micro-pores. At a resolution of 0\farcs1, new forms of magnetic structures are found in strong field areas: elongated “ribbons” and more circular “flowers”. In this paper we study the temporal evolution of these small scale magnetic structures. In strong-field regions the time-evolution is more that of a magnetic fluid than that of collections of flux-tubes that keep their identity. We find that the granular flow concentrates the magnetic field into flux sheets that are visible as thin bright features in the filtergrams. Weak upflows are found in the flux sheets and downflows in the immediate surroundings. The flux sheets often become unstable to a fluting instability and the edges buckle. The sheets tend to break up into strings of bright points, still with weak upflows in the magnetic elements and zero velocity or downflows between them. Where there are larger flux concentrations we find ribbons, flowers and micro-pores. There is a continuous transition between these forms and they evolve from one form to another. The appearance is mostly determined by the horizontal size – larger structures are dark (micro-pores), narrower structures are ribbon shaped and the flowers are the smallest in extent. All these structures have darker inner parts and a bright edge. The plasma is found to be at rest in the ribbons, with small concentrations of weak upflow sites. Narrow sheets with downdrafts are found right at the edges of the magnetic field concentrations

    Solar magnetic elements at 0

    No full text
    New observations of solar magnetic elements in a remnant active region plage near disk center are presented. The observations were obtained at the recently commissioned Swedish 1-m Solar Telescope on La Palma. We examine a single 430.5 nm G-band filtergram that resolves ~70 km (0\farcs1) structures and find new forms of magnetic structures in this particular region. A cotemporal \ion{Ca}{ii} H-line image is used to examine the low-chromosphere of network elements. A cotemporal \ion{Fe}{i} 630.25 nm magnetogram that resolves structures as small as 120 km (0\farcs18) FWHM with a flux sensitivity of approximately 130 Mx cm-2 quantifies the magnetic structure of the region. A \ion{Ni}{i} 676.8 nm Dopplergram establishes relative velocity patterns associated with the network features with an accuracy of about 300 m s-1. We find that magnetic flux in this region as seen in both the magnetogram and the G-band image is typically structured into larger, amorphous, “ribbons” which are not resolved into individual flux tubes. The measured magnetic flux density in the ribbon structures ranges from 300 to 1500 Mx cm-2, the higher values occurring at localized concentrations embedded within the ribbons. The Dopplergram indicates relative downflows associated with all magnetic elements with some indication that higher downflows occur adjacent to the peak magnetic flux location. The mean absolute magnetic flux density of the remnant plage network is about 130 Mx cm-2; in the lowest flux regions of the field-of-view, the mean absolute flux density is approximately 60 Mx cm-2. Within these quiet regions we do not find evidence of pervasive kilo-gauss strength magnetic elements as seen in recent high resolution internetwork studies. In general, the observations confirm recent 3-dimensional numerical simulations which show that the magnetic field in high-density regions such as plage is concentrated in complex structures that are not generally composed of discrete magnetic flux tubes

    Impaired salivary gland activity in patients with autoimmune polyendocrine syndrome type I

    No full text
    Autoimmune polyendocrine syndrome type I (APS-I) is a severe disease caused by mutations in the autoimmune regulator (AIRE) gene. We hypothesized that salivary gland dysfunction could be a possible unexplored component of these patients and here aimed to investigate salivary and lachrymal symptoms in the Norwegian cohort of APS-I patients (N = 41) and the aetiology behind it. Sicca symptoms and possible corresponding underlying factors were assessed by subjective reports combined with objective measures of saliva and tear flow, serological testing, immune fluorescence microscopy, ultrasonography and searching for putative autoantibodies in the salivary glands. In addition, defensin and anti-defensin levels were analysed in patients and compared with healthy controls. Our results indicate mild salivary and/or lachrymal gland dysfunction manifesting in low saliva or tear flow in a total of 62% of APS-I patients. Serum IgG from 9 of 12 patients bound to targets in salivary gland biopsy slides, although the specificity and pattern of binding varied. There was no reactivity against known Sjögren-associated autoantigens in sera from APS-I patients using quantitative methods, but 11% were ANA positive by immunofluorescence microscopy. We identified several putative autoantigens in one patient, although none of these were verified as APS-I specific. We conclude that impaired salivary gland activity is part of the clinical picture of APS-I and our findings could indicate an autoimmune aetiology. We further show that APS-I patients have an altered antimicrobial signature in both sera and saliva, which requires further investigations
    corecore