70 research outputs found

    Finding Single Copy Genes Out of Sequenced Genomes for Multilocus Phylogenetics in Non-Model Fungi

    Get PDF
    Historically, fungal multigene phylogenies have been reconstructed based on a small number of commonly used genes. The availability of complete fungal genomes has given rise to a new wave of model organisms that provide large number of genes potentially useful for building robust gene genealogies. Unfortunately, cross-utilization of these resources to study phylogenetic relationships in the vast majority of non-model fungi (i.e. “orphan” species) remains an unexamined question. To address this problem, we developed a method coupled with a program named “PHYLORPH” (PHYLogenetic markers for ORPHans). The method screens fungal genomic databases (107 fungal genomes fully sequenced) for single copy genes that might be easily transferable and well suited for studies at low taxonomic levels (for example, in species complexes) in non-model fungal species. To maximize the chance to target genes with informative regions, PHYLORPH displays a graphical evaluation system based on the estimation of nucleotide divergence relative to substitution type. The usefulness of this approach was tested by developing markers in four non-model groups of fungal pathogens. For each pathogen considered, 7 to 40% of the 10–15 best candidate genes proposed by PHYLORPH yielded sequencing success. Levels of polymorphism of these genes were compared with those obtained for some genes traditionally used to build fungal phylogenies (e.g. nuclear rDNA, β-tubulin, γ-actin, Elongation factor EF-1α). These genes were ranked among the best-performing ones and resolved accurately taxa relationships in each of the four non-model groups of fungi considered. We envision that PHYLORPH will constitute a useful tool for obtaining new and accurate phylogenetic markers to resolve relationships between closely related non-model fungal species

    Neoadjuvant treatment of pancreatic adenocarcinoma: a systematic review and meta-analysis of 5520 patients

    Full text link

    Transcription from a gene desert in a melanoma porcine model

    No full text
    International audienceThe genetic mechanisms underlying cutaneous melanoma onset and progression need to be further understood to improve patients' care. Several studies have focused on the genetic determinism of melanoma development in the MeLiM pig, a biomedical model of cutaneous melanoma. The objective of this study was to better describe the influence of a particular genomic region on melanoma progression in the MeliM model. Indeed, a large region of theSus scrofachromosome 1 has been identified by linkage and association analyses, but the causal mechanisms have remained elusive. To deepen the analysis of this candidate region, a dedicated SNP panel was used to fine map the locus, downsizing the interval to less than 2 Mb, in a genomic region located within a large gene desert. Transcription from this locus was addressed using a tiling array strategy and further validated by RT-PCR in a large panel of tissues. Overall, the gene desert showed an extensive transcriptional landscape, notably dominated by repeated element transcription in tumor and fetal tissues. The transcription of LINE-1 and PERVs has been confirmed in skin and tumor samples from MeLiM pigs. In conclusion, although this study still does not identify a candidate mutation for melanoma occurrence or progression, it highlights a potential role of repeated element transcriptional activity in the MeLiM model
    corecore