26 research outputs found

    Artists Work in Museums: Histories Interventions Subjectivities

    Full text link
    Artists Work in Museums: histories interventions and subjectivities brings together artists, historians and museum professionals to explore the history and contribution of artists working in museums as members of staff. It examines how the museum has functioned as a specific site of cultural production and subjective engagement for artists and designers in their role as directors, curators, project managers, and educators. Drawing on specific case studies and interviews, the essays document the historically contingent, problematic character of the artist museum professional, and his/her agency within the museum system

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Proceedings of the 2018 Workshop on Compositional Approaches in Physics, NLP, and Social Sciences

    Full text link
    The ability to compose parts to form a more complex whole, and to analyze a whole as a combination of elements, is desirable across disciplines. This workshop bring together researchers applying compositional approaches to physics, NLP, cognitive science, and game theory. Within NLP, a long-standing aim is to represent how words can combine to form phrases and sentences. Within the framework of distributional semantics, words are represented as vectors in vector spaces. The categorical model of Coecke et al. [2010], inspired by quantum protocols, has provided a convincing account of compositionality in vector space models of NLP. There is furthermore a history of vector space models in cognitive science. Theories of categorization such as those developed by Nosofsky [1986] and Smith et al. [1988] utilise notions of distance between feature vectors. More recently G\"ardenfors [2004, 2014] has developed a model of concepts in which conceptual spaces provide geometric structures, and information is represented by points, vectors and regions in vector spaces. The same compositional approach has been applied to this formalism, giving conceptual spaces theory a richer model of compositionality than previously [Bolt et al., 2018]. Compositional approaches have also been applied in the study of strategic games and Nash equilibria. In contrast to classical game theory, where games are studied monolithically as one global object, compositional game theory works bottom-up by building large and complex games from smaller components. Such an approach is inherently difficult since the interaction between games has to be considered. Research into categorical compositional methods for this field have recently begun [Ghani et al., 2018]. Moreover, the interaction between the three disciplines of cognitive science, linguistics and game theory is a fertile ground for research. Game theory in cognitive science is a well-established area [Camerer, 2011]. Similarly game theoretic approaches have been applied in linguistics [J\"ager, 2008]. Lastly, the study of linguistics and cognitive science is intimately intertwined [Smolensky and Legendre, 2006, Jackendoff, 2007]. Physics supplies compositional approaches via vector spaces and categorical quantum theory, allowing the interplay between the three disciplines to be examined

    Interacting Conceptual Spaces

    No full text
    We propose applying the categorical compositional scheme of [6] to conceptual space models of cognition. In order to do this we introduce the category of convex relations as a new setting for categorical compositional semantics, emphasizing the convex structure important to conceptual space applications. We show how conceptual spaces for composite types such as adjectives and verbs can be constructed. We illustrate this new model on detailed examples
    corecore