50 research outputs found

    Outcome of paediatric intensive care survivors

    Get PDF
    The development of paediatric intensive care has contributed to the improved survival of critically ill children. Physical and psychological sequelae and consequences for quality of life (QoL) in survivors might be significant, as has been determined in adult intensive care unit (ICU) survivors. Awareness of sequelae due to the original illness and its treatment may result in changes in treatment and support during and after the acute phase. To determine the current knowledge on physical and psychological sequelae and the quality of life in survivors of paediatric intensive care, we undertook a computerised comprehensive search of online databases for studies reporting sequelae in survivors of paediatric intensive care. Studies reporting sequelae in paediatric survivors of cardiothoracic surgery and trauma were excluded, as were studies reporting only mortality. All other studies reporting aspects of physical and psychological sequelae were analysed. Twenty-seven studies consisting of 3,444 survivors met the selection criteria. Distinct physical and psychological sequelae in patients have been determined and seemed to interfere with quality of life. Psychological sequelae in parents seem to be common. Small numbers, methodological limitations and quantitative and qualitative heterogeneity hamper the interpretation of data. We conclude that paediatric intensive care survivors and their parents have physical and psychological sequelae affecting quality of life. Further well-designed prospective studies evaluating sequelae of the original illness and its treatment are warranted

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    A Novel Trichothecene Toxin Phenotype Associated with Horizontal Gene Transfer and a Change in Gene Function in <i>Fusarium</i>

    No full text
    Fusarium trichothecenes are among the mycotoxins of most concern to food and feed safety. Production of these mycotoxins and presence of the trichothecene biosynthetic gene (TRI) cluster have been confirmed in only two multispecies lineages of Fusarium: the Fusarium incarnatum-equiseti (Incarnatum) and F. sambucinum (Sambucinum) species complexes. Here, we identified and characterized a TRI cluster in a species that has not been formally described and is represented by Fusarium sp. NRRL 66739. This fungus is reported to be a member of a third Fusarium lineage: the F. buharicum species complex. Cultures of NRRL 66739 accumulated only two trichothecenes, 7-hydroxyisotrichodermin and 7-hydroxyisotrichodermol. Although these are not novel trichothecenes, the production profile of NRRL 66739 is novel, because in previous reports 7-hydroxyisotrichodermin and 7-hydroxyisotrichodermol were components of mixtures of 6–8 trichothecenes produced by several Fusarium species in Sambucinum. Heterologous expression analysis indicated that the TRI13 gene in NRRL 66739 confers trichothecene 7-hydroxylation. This contrasts the trichothecene 4-hydroxylation function of TRI13 in other Fusarium species. Phylogenetic analyses suggest that NRRL 66739 acquired the TRI cluster via horizontal gene transfer from a close relative of Incarnatum and Sambucinum. These findings provide insights into evolutionary processes that have shaped the distribution of trichothecene production among Fusarium species and the structural diversity of the toxins

    Prevalence and quality of warfarin use for patients with atrial fibrillation in the long-term care setting.

    No full text
    BACKGROUND: Evidence-based clinical practice guidelines recommend the use of warfarin sodium for stroke prevention in most patients with atrial fibrillation (AF) who do not have risk factors for hemorrhagic complications, irrespective of age. METHODS: The medical records of all residents of a convenience sample of long-term care facilities in Connecticut (n = 21) were reviewed. The percentages of all patients with AF (AF patients) and ideal candidates for warfarin therapy (ie, AF patients with no risk factors for hemorrhage) who received warfarin were determined; for patients receiving warfarin, the percentage of days spent in the therapeutic range of international normalized ratio (INR) values (2.0-3.0) was also assessed. The relationship between receipt of warfarin and the presence of stroke and bleeding risk factors was assessed in multivariate models. RESULTS: Atrial fibrillation was present in 429 (17%) of the 2587 long-term care residents. Overall, 42% of AF patients were receiving warfarin. However, only 44 (53%) of 83 ideal candidates were receiving this therapy. In residents who received warfarin therapy, the therapeutic range of INR values was maintained only 51% of the time. The odds of receiving warfarin in the study sample decreased with increasing number of risk factors for bleeding and increased (nonsignificant trend) with increasing number of stroke risk factors present. CONCLUSIONS: Atrial fibrillation is very common among residents of long-term care facilities. Even among apparently ideal candidates, warfarin therapy is underused for stroke prevention in patients with AF. Prescribing decisions and monitoring related to warfarin therapy in the long-term care setting warrant improvement

    Evolution of structural diversity of trichothecenes, a family of toxins produced by plant pathogenic and entomopathogenic fungi

    No full text
    <div><p>Trichothecenes are a family of terpenoid toxins produced by multiple genera of fungi, including plant and insect pathogens. Some trichothecenes produced by the fungus <i>Fusarium</i> are among the mycotoxins of greatest concern to food and feed safety because of their toxicity and frequent occurrence in cereal crops, and trichothecene production contributes to pathogenesis of some <i>Fusarium</i> species on plants. Collectively, fungi produce over 150 trichothecene analogs: i.e., molecules that share the same core structure but differ in patterns of substituents attached to the core structure. Here, we carried out genomic, phylogenetic, gene-function, and analytical chemistry studies of strains from nine fungal genera to identify genetic variation responsible for trichothecene structural diversity and to gain insight into evolutionary processes that have contributed to the variation. The results indicate that structural diversity has resulted from gain, loss, and functional changes of trichothecene biosynthetic (<i>TRI</i>) genes. The results also indicate that the presence of some substituents has arisen independently in different fungi by gain of different genes with the same function. Variation in <i>TRI</i> gene duplication and number of <i>TRI</i> loci was also observed among the fungi examined, but there was no evidence that such genetic differences have contributed to trichothecene structural variation. We also inferred ancestral states of the <i>TRI</i> cluster and trichothecene biosynthetic pathway, and proposed scenarios for changes in trichothecene structures during divergence of <i>TRI</i> cluster homologs. Together, our findings provide insight into evolutionary processes responsible for structural diversification of toxins produced by pathogenic fungi.</p></div
    corecore